
© 2026 Altinity, Inc. © 2026 Altinity, Inc. 111

Robert Hodges - Altinity CEO
Mikhail Filimonov - ClickHouse Architect
18 February 2026

Five Ways to Make your ClickHouse®
Slow (and How
to Avoid Them)

© 2026 Altinity, Inc. © 2026 Altinity, Inc. 222

Altinity® is a Registered Trademark of Altinity, Inc.
ClickHouse® is a registered trademark of ClickHouse, Inc.;

Altinity is not affiliated with or associated with ClickHouse, Inc.

Altinity.Cloud Enterprise Support

Run Open Source ClickHouse® Better

© 2026 Altinity, Inc.

ClickHouse shared nothing architecture

3

Vectorized,
parallel query

engine

MergeTree
data in block

storage

Separated
MergeTree
data in S3

Cluster
consensus

IS3-Compatible Object Storage

MergeTree Data MergeTree Data

Caching

ClickHouse Keeper

Caching

ClickHouse Server

© 2026 Altinity, Inc.

Traditional real-time event pipeline with ClickHouse

4

Real-time
Dashboards

Event Stream

Data
Sources

MergeTree

API Access

Alerts

© 2026 Altinity, Inc.

ClickHouse works great for almost any real-time analytics
SELECT Carrier, toYear(FlightDate) AS Year,
 (sum(Cancelled) / count(*)) * 100. AS cancelled_pct
FROM default.ontime_ref
GROUP BY Carrier, Year HAVING cancelled_pct > 1.
ORDER BY cancelled_pct DESC LIMIT 10

 ┌─Carrier─┬─Year─┬──────cancelled_pct─┐
1. │ G4 │ 2020 │ 16.733186040434276 │
2. │ EA │ 1989 │ 10.321500966388536 │
3. │ WN │ 2020 │ 9.284307653599388 │
. . .
10 rows in set. Elapsed: 0.825 sec. Processed 196.51 million
rows, 982.57 MB (756.93 million rows/s., 1.19 GB/s.)

5

© 2026 Altinity, Inc.

But…we did everything possible to make it slow!!

6

● Underpowered AWS m7g.xlarge Graviton with 4 vCPUs & 14GB RAM
● Slowest EBS storage speed: 125 MiB/sec
● Force cold reads with SETTINGS min_bytes_to_use_direct_io = 1

© 2026 Altinity, Inc.

The secret of ClickHouse’s success: compressed columns

7

ClickHouse

Read only selected columns

Rows minimally or not compressed Columns highly compressed

PostgreSQL, MySQL

Read all columns in row

© 2026 Altinity, Inc.
8

Visualizing effect of columns and compression

61 GB
(100%)

17 MB
(.027%)

2 MB
(.0034%)

937 MB
(1.5%)

Read every row

Read 3 columns:
Carrier,

FlightDate,
Cancelled

Read 3
compressed

columns

Read 3
compressed

columns over
8 threads

© 2026 Altinity, Inc. 9

So…What could
possibly go wrong?

© 2026 Altinity, Inc. 10

Bad table design

Problem #1

© 2026 Altinity, Inc.

Best practice: partition by time

11

CREATE TABLE default.ontime_ref(. . .)
ENGINE = MergeTree
PARTITION BY Year ORDER BY (Carrier, FlightDate)

Name: 2018_0_5_1_10

Name: 2017_0_5_1_9

Parts

Name: 2018_6_6_0_10

Rule of thumb:

Choose partitions that
result in ~1000 parts
or less

© 2026 Altinity, Inc.

Order by increasing cardinality, with tenant first

12

CREATE TABLE default.ontime_ref(. . .)
ENGINE = MergeTree
PARTITION BY Year ORDER BY (Carrier, FlightDate)

Sparse
index

Name: 201905_510_815_3

Carrier FlightDate Etc.Carrier
FlightDate

Sorted,
compressed,

indexed column

© 2026 Altinity, Inc.

But what if we made a different choice of schema?

13

CREATE TABLE test.ontime_bad_partitioning
AS default.ontime_ref
ENGINE = MergeTree
PARTITION BY (Carrier, toYYYYMM(FlightDate))
ORDER BY (Carrier, FlightDate)

INSERT INTO test.ontime_bad_partitioning
SELECT *
FROM default.ontime_ref
SETTINGS max_threads = 1, max_insert_threads = 1

Pro tip: Reduce
threads to avoid
running out of
memory

© 2026 Altinity, Inc.

We can now make ClickHouse really slow!
SELECT Carrier, toYear(FlightDate) AS Year,
 (sum(Cancelled) / count(*)) * 100. AS cancelled_pct
FROM test.ontime_bad_partitioning
GROUP BY Carrier, Year HAVING cancelled_pct > 1.
ORDER BY cancelled_pct DESC LIMIT 10
[SETTINGS min_bytes_to_use_direct_io = 1]

 ┌─Carrier─┬─Year─┬──────cancelled_pct─┐
1. │ G4 │ 2020 │ 16.733186040434276 │
. . .
10 rows in set. Elapsed: 5.092 sec. Processed 196.51 million
rows, 982.57 MB (38.59 million rows/s., 160.74 MB/s.)

14

Force
direct I/O

© 2026 Altinity, Inc.

Bad partitioning == bad performance!!

15

© 2026 Altinity, Inc.

Why it’s better to partition by year?

16

© 2026 Altinity, Inc.

Cheat sheet for schema design

17

1. Time-based column in PARTITION BY
2. Put tenants using ORDER BY, then add columns in order of cardinality
3. Use appropriate datatypes (e.g., Int32, not String)
4. Use codecs like Delta or LowCardinality
5. Use ZSTD compression instead of default LZ4 to really squeeze space

a. Use it *if* you hit I/O limits but have free CPU capacity

Hard to change!

© 2026 Altinity, Inc.

Measure compression with amazing system tables!

18

SELECT
 count(),
 formatReadableSize(sum(data_compressed_bytes),
 formatReadableSize(sum(data_uncompressed_bytes)
FROM system.columns
WHERE (database = 'default') AND (`table` = 'ontime_ref')
AND (name IN ('Carrier', 'FlightDate', 'Cancelled'))

Other great tables: system.parts and system.tables

© 2026 Altinity, Inc. 19

Too many tiny inserts

Problem #2

© 2026 Altinity, Inc.

If your inserts look like this, you are doing it wrong!

INSERT INTO default.ontime_ref VALUES
(2017,4,12,12,2,'2017-12-12','UA\0\0\0\0\0',
19977,'UA',...),
(2017,4,12,12,2,'2017-12-12','UA\0\0\0\0\0',
19977,'UA',...)

20

© 2026 Altinity, Inc.

Small inserts can crush your ClickHouse server

21

ClickHouse

Storage

Small inserts
from many
clients

MergeTree
ontime

© 2026 Altinity, Inc.

Lots of small parts == slow queries and high merge load

22

Unmerged,
freshly

inserted
part

Fully
merged

part

Query efficiency

WRITE AMPLIFICATION!

© 2026 Altinity, Inc.

Fix #1: Use big batches in your application

23

#!/bin/bash
INSERT='INSERT+INTO+ontime+Format+CSVWithNames'
cat test.csv | curl -X POST --data-binary @- \
 "http://localhost:8123/?query=${INSERT}"

© 2026 Altinity, Inc.

Fix #2: Enable async inserts

INSERT INTO default.ontime_ref VALUES
(2017,4,12,12,2,'2017-12-12','UA\0\0\0\0\0',19977,'UA',...),

24

Table
ontime_ref

Persistent
Storage

Buffer writes
automatically

Notify client
on commit

https://kb.altinity.com/altinity-kb-queries-and-syntax/async-inserts/

https://kb.altinity.com/altinity-kb-queries-and-syntax/async-inserts/

© 2026 Altinity, Inc.

Enable async inserts using property settings

CREATE SETTINGS PROFILE IF NOT EXISTS `async_profile`
ON CLUSTER '{cluster}'
SETTINGS
 async_insert = 1,
 wait_for_async_insert=1,
 async_insert_busy_timeout_ms = 10000,
 async_insert_use_adaptive_busy_timeout = 0
;

CREATE USER IF NOT EXISTS async ON CLUSTER '{cluster}'
 IDENTIFIED WITH sha256_password BY 'topsecret' HOST ANY
 SETTINGS PROFILE `async_profile`
;

25

Use async insert
and wait for answer

Wait this long

Don’t let
ClickHouse set

automatic values

User with settings

© 2026 Altinity, Inc. 26

Bad queries

Problem #3

© 2026 Altinity, Inc.

Small differences in queries make big differences in response

27

SELECT Carrier,
 avg(DepDelay)AS Delay
FROM ontime_ref
GROUP BY Carrier
ORDER BY Delay DESC
LIMIT 50

Simple aggregate, short
GROUP BY key with few values

SELECT Carrier, FlightDate,
 avg(DepDelay) AS Delay,
 uniqExact(TailNum) AS Aircraft
FROM ontime_ref
GROUP BY Carrier, FlightDate
ORDER BY Delay DESC
LIMIT 50

More complex aggregates, longer
GROUP BY with more values

2.72 sec
2.38 GB RAM

0.64 sec
114 KB RAM 21,891x more RAM used

4.25x slower

© 2026 Altinity, Inc.

How does ClickHouse process a query with aggregates?

28

SELECT Carrier,
 avg(DepDelay)AS Delay
FROM ontime
GROUP BY Carrier
ORDER BY Delay DESC

┌─Carrier─┬──────────────Delay─┐
│ B6 │ 12.058290698785067 │
│ EV │ 12.035012037703922 │
│ NK │ 10.437692933474269 │
. . .

ClickHouse Server

Parse/Plan

Merge/Sort

Scan
In-RAM
Hash

Tables

Parts in Storage

© 2026 Altinity, Inc.

How does a ClickHouse thread do aggregation?

29

Merge/Sort

Scan

Parts in Storage

AL => 4259/1070,
2385/415, …

DL => 20663/1198,
25166/2711, …
… Scan Thread

Hash Table

Other
Scan

Thread
Hash

Tables

Result

GROUP BY
Key

Partial
Aggregates

© 2026 Altinity, Inc.

We can optimize queries by choosing better aggregates

30

SELECT Carrier, FlightDate,
 avg(DepDelay) AS Delay,
 uniqHLL12(TailNum) AS Aircraft
FROM ontime
GROUP BY Carrier, FlightDate
ORDER BY Delay DESC
LIMIT 50

uniqHLL12 uses fixed size
HyperLogLog structure

2.30 sec
450 GB RAM5.4x less RAM used

SELECT Carrier, FlightDate,
 avg(DepDelay) AS Delay,
 uniqExact(TailNum) AS Aircraft
FROM ontime
GROUP BY Carrier, FlightDate
ORDER BY Delay DESC
LIMIT 50

uniqExact stores each unique
value in a hash table that grows

2.72 sec
2.38 GB RAM

15% faster

© 2026 Altinity, Inc.

Here’s some magic with optimizing joins
SELECT o.Dest, any(a.Name) AS AirportName,
 count(Dest) AS Flights
FROM ontime_ref o
JOIN default.airports a ON a.IATA = o.Dest
GROUP BY Dest ORDER BY Flights
DESC LIMIT 10

SELECT o.Dest, a.Name AS AirportName, o.Flights
FROM (
 SELECT Dest, count(Dest) AS Flights
 FROM ontime_ref GROUP BY Dest) AS o
JOIN default.airports a ON a.IATA = o.Dest
ORDER BY Flights DESC LIMIT 10

31

2.685 sec
39.18 MB RAM

0.524 sec
1.02 MB RAM

© 2026 Altinity, Inc.

Let’s look more deeply at what’s happening in the scan

. . .
IATA
. . .

airports

. . .
Dest
. . .

ontime

SELECT . . . FROM ontime o JOIN airports a ON a.IATA = o.Dest

32

S
c
a
n

ATL 576
1501
3302
…

Hartsfield Jackson Atlanta International Airport
Hartsfield Jackson Atlanta International Airport
Hartsfield Jackson Atlanta International Airport
…

ORD 255 Chicago O'Hare International Airport

Partial
aggregates

© 2026 Altinity, Inc.

Where did those awesome query stats come from?

SELECT
 event_time,
 type,
 is_initial_query,
 query_duration_ms / 1000 AS duration,
 read_rows,
 read_bytes,
 result_rows,
 formatReadableSize(memory_usage) AS memory,
 query
FROM system.query_log
WHERE (user = 'default') AND (type = 'QueryFinish')
ORDER BY event_time DESC
LIMIT 50

33

© 2026 Altinity, Inc. 34

#1: Run against real data (and plenty of it

#2: Isolate slow queries and optimize them

#3: Rinse and repeat

Fixing queries efficiently

© 2026 Altinity, Inc. 35

Insufficient resources

Problem #4

© 2026 Altinity, Inc.

Is your query still too slow? Throw money at it!
SELECT Carrier, toYear(FlightDate) AS Year,
 (sum(Cancelled) / count(*)) * 100. AS cancelled_pct
FROM test.ontime_bad_partitioning
GROUP BY Carrier, Year HAVING cancelled_pct > 1.
ORDER BY cancelled_pct DESC LIMIT 10
[SETTINGS min_bytes_to_use_direct_io = 1]

 ┌─Carrier─┬─Year─┬──────cancelled_pct─┐
1. │ G4 │ 2020 │ 16.733186040434276 │
. . .
10 rows in set. Elapsed: 5.092 sec. Processed 196.51 million
rows, 982.57 MB (38.59 million rows/s., 160.74 MB/s.)

36

© 2026 Altinity, Inc.

Better hardware can make slow queries fast…

37

© 2026 Altinity, Inc.

But ClickHouse servers don’t just run queries...

38

Caching Caching

ClickHouse ClickHouse

ClickHouse Keeper

4-Course
Menu

Query
Insert
Merge
Update

© 2026 Altinity, Inc. 39

#1: Testing real workloads (large & concurrent)

#2: Detecting trouble: CPU, IOWait, RAM, Network

#3: Scaling quickly when trouble hits

#4: Fixing apps that overuse resources

Common issues with resource management

© 2026 Altinity, Inc. 40

Migrations from
non-compatible

databases to ClickHouse

Problem #5

© 2026 Altinity, Inc.

Some migrations to ClickHouse just work

41

PostgreSQL, MySQL ClickHouse

Table-to-Table Migration

SELECT Carrier, avg(DepDelay)AS Delay FROM ontime_ref
WHERE TailNum = 'N812AW' AND Year = 2016 GROUP BY Carrier

© 2026 Altinity, Inc.

Others are more “challenging”

42

Splunk ClickHouse

?

SELECT Carrier, TailNum, avg(DepDelay) AS Delay FROM ontime_ref
WHERE hasToken(TailNum, 'N812') OR hasToken(TailNum, 'N573')
GROUP BY Carrier, TailNum

This is
full-text
search

Events
with full

text
indexes

Table
with
skip

indexes

© 2026 Altinity, Inc.

We need to decide how to implement full text search

43

ClickHouse

Full text index – In beta,
potentially very large

Bloom filter index
(ngram_bf) – Small but
needs careful tuning

SELECT Carrier, TailNum, avg(DepDelay) AS Delay FROM ontime_ref
WHERE TailNum LIKE 'N812%' OR TailNum LIKE 'N573%'
GROUP BY Carrier, TailNum

LIKE operator – It’s fast and ngram_bf index makes it faster

1
2

3

© 2026 Altinity, Inc. 44

#1: Test queries under realistic load

#2: Rethink slow query patterns

#3: It takes time to tune indexes and queries

Migrating different database types to ClickHouse

© 2026 Altinity, Inc.

Server log messages are your friend

45

SELECT Carrier, TailNum, avg(DepDelay) AS Delay FROM
rhodges_7273b.ontime_bloom_filter
WHERE TailNum LIKE '%N812%' OR TailNum LIKE '%N128%'
GROUP BY Carrier, TailNum ORDER BY Delay DESC LIMIT 10
SETTINGS send_logs_level='debug'

... 2026.02.18 07:00:54.615183 [31]
{caf33ae2-a6ee-424d-b4f0-0ac022edab32} <Debug> executeQuery: (from
[::ffff:10.129.59.185]:60032, user: admin) (query 1, line 1) SELECT …

... 2026.02.18 07:00:54.630439 [31]
{caf33ae2-a6ee-424d-b4f0-0ac022edab32} <Debug>
rhodges_7273b.ontime_bloom_filter (SelectExecutor): Index
`TailNum_Ngrambf` has dropped 14033/24089 granules, it took 21ms across 4
threads

© 2026 Altinity, Inc.

Avoiding the Five Performance Problems

46

● Tune your schema to reduce I/O
● Make inserts as big as possible
● Test queries on real data and fix the slow ones
● Test hardware on realistic workloads and increase it before you hit

problems
● Design and test migrations from other databases carefully!

Don’t assume ClickHouse will be fast. Prove it!!!

© 2026 Altinity, Inc. © 2026 Altinity, Inc. 47

Thank you!
Questions?
Robert Hodges
CEO Altinity

https://altinity.com

We’re hiring!

Check out our TTL Guide!

My LinkedIn

https://altinity.com

© 2026 Altinity, Inc.

Icons- Transparent
Clickhouse (Native)
Cluster

Director Cluster Swarm Cluster Keeper Other

48

© 2026 Altinity, Inc.

Clickhouse (Native)
Cluster

Director Cluster Swarm Cluster Keeper Other

Icons-Stackable on White Backgrounds

© 2026 Altinity, Inc.

Clickhouse (Native)
Cluster

Director Cluster Swarm Cluster Keeper Other

50

Icons-Stackable on Dark Backgrounds

