Five Ways to Make your ClickHouse®
Slow (and How
to Avoid Them)

Robert Hodges - Altinity CEO
Mikhail Filimonov - ClickHouse Architect

18 February 2026

£} Altinity © 2026 Altinity, Inc.

75 ALTINITY

Run Open Source ClickHouse® Better
Altinity.Cloud = Enterprise Support

Altinity® is a Registered Trademark of Altinity, Inc.
ClickHouse® is a registered trademark of ClickHouse, Inc.;
Altinity is not affiliated with or associated with ClickHouse, Inc.

£} Altinity © 2026 Altinity, Inc.

ClickHouse shared nothing architecture

ClickHouse Server

@ ..

Vectorized,
parallel query —
engine A / consensus
Y
[]
MergeTree *
data in block A
storage /i\
Separated . . K @ Q
S3-Compatible Object Storage \/
MergeTree ClickH K
data in S3 MergeTree Data MergeTree Data ICKHouse Reeper

N\ Altinity 3

Traditional real-time event pipeline with ClickHouse

Data
Sources
! Real-time
\ "Dashboards
\ /

\
\

\\\ @ @--—-> API Access

S~ kafka @

Event Stream MergeTree
\

" Alerts

£ Altinity 4

VN
A 4

ClickHouse works great for almost any real-time analytics

SELECT Carrier, toYear (FlightDate) AS Year,
(sum(Cancelled) / count(*)) * 100. AS cancelled pct

FROM default.ontime ref

GROUP BY Carrier, Year HAVING cancelled pct > 1.

ORDER BY cancelled pct DESC LIMIT 10

—Carrier——Year— cancelled pct—
1. | G4 | 2020 | 16.733186040434276 |
2. | EA | 1989 | 10.321500966388536 |
3. | WN | 2020 | 9.284307653599388 |

10 rows in set. Elapsed: [UR:VEEE-T-Te Processed IRIJNCHEE 8B RN
e, 982.57 MB ([ETICER CERERS WL tYAN, 1.19 GB/s.)

n Altinity 5

But...we did everything possible to make it slow!!

e Underpowered AWS m7g.xlarge Graviton with 4 vCPUs & 14GB RAM
e Slowest EBS storage speed: 125 MiB/sec
e Force cold reads with SETTINGS min_bytes_to_use_direct_io =1

N\ Altinity

The secret of ClickHouse’s success:

PostgreSQL, MySQL ClickHouse

Read all columns in row

T
|
-

|

1
|

1
[

\

Rows minimally or not compressed

1 Altinity © 2026 Altinity, Inc.

Read only selected columns

u u
| |
+ +
| |
L L
| |
1 1
| |
v &5 v

Columns highly compressed

Visualizing effect of columns and compression

Read every row

' w

ead 3 columns:

Carrier,
FlightDate,
Cancelled

8

compressed
columns over

Read 3

threads

N\ Altinity

Read 3
compressed
columns

N

O

\

2 MB
(.0034%)

17 MB
(.027%)

So...What could
possibly go wrong?

© 2026 Altinity, Inc.

Problem #1

Bad table design

Best practice: partition by time

CREATE TABLE default.ontime ref(. . .)
ENGINE = MergeTree

|2 VUDNBO NNV ER (ks ORDER BY (Carrier, FlightDate)

Name: 2017 0.5 1 9

Rule of thumb:

Name: 2018_0_5 1_10 ..
T Choose partitions that

result in ~1000 parts
or less

Name: 2018 6 6 0 10

£ Altinity 11

Order by increasing cardinality, with tenant first

CREATE TABLE default.ontime ref(. . .)
ENGINE = MergeTree
PARTITION BY Year @ n)HIS8:)E{ert 5 oR-} M i B Ne i 40l Rol-))

Name: 201905 _510_815 3

5©

{\G‘ . ‘(\\06 . .
RN Carrier FlightDate Etc.
. Sorted,
: compressed,
| — indexed column
—

|

Sparse :

index

N\ Altinity 12

But what if we made a choice of schema?

CREATE TABLE test.ontime bad partitioning
AS default.ontime ref

ENGINE = MergeTree

PARTITION BY (Carrier, toYYYYMM(FlightDate))
ORDER BY (Carrier, FlightDate)

Pro tip: Reduce
threads to avoid
running out of

: s memory
INSERT INTO test.ontime bad partitioning

SELECT *
FROM default.ontime_ref

SETTINGS max threads = 1, max insert threads =1

N\ Altinity 13

We can now make ClickHouse

SELECT Carrier, toYear (FlightDate) AS Year,
(sum(Cancelled) / count(*)) * 100. AS cancelled pct

FROM test.ontime bad partitioning

GROUP BY Carrier, Year HAVING cancelled pct > 1.

ORDER BY cancelled pct DESC LIMIT 10

[SETTINGS min bytes to use direct io 1]<~_Force

direct I/O

—Carrier——Year— cancelled pct—
1. | G4 | 2020 | 16.733186040434276 |

10 rows in set. Elapsed: Processed 196.51 million

rows, 982.57 MB (kL) m11110n rows/s 160.74 MB/s.)

n Altinity 14

Bad partitioning == bad performance!!

Effects of partitioning choices
B Cold Run M Hot Run

Partition by Year Partition by Carrier+Month

£ Altinity

15

Why it’s better to partition by year?

Flights (Millions)

N\ Altinity

6

Flights By Year

@
‘0'0000““. ®

1990 1995 2000 2005 2010 2015

Year

Flights (Millons)

Flights by Carrier

40

30 ®

@

@
20 ®
®
@O
10 .b
.;ill
“"’“ngg-....
. D g IX
Z2S83Q28THRSTEEFYS

Carrier

16

Cheat sheet for schema design Hard to change!
1. Time-based column in PARTITION BY /
Put tenants using ORDER BY, then add columns in order of cardinalit
Use appropriate datatypes (e.g., Int32, not String)

2
3
4. Use codecs like Delta or LowCardinality
5

Use ZSTD compression instead of default LZ4 to really squeeze space
a. Use it *if* you hit I/O limits but have free CPU capacity

N\ Altinity 17

Measure compression with amazing system tables!

SELECT

count (),
formatReadableSize (sum(data compressed bytes),

formatReadableSize (sum(data uncompressed bytes)

FROM system.columns
WHERE (database = 'default') AND (table = 'ontime ref')
AND (name IN ('Carrier', 'FlightDate', 'Cancelled'))

Other great tables: system.parts and system.tables

£ Altinity 18

Problem #2

Too many tiny inserts

If your inserts look like this, you are doing it wrong!

INSERT INTO default.ontime ref VALUES
(2017,4,12,12,2,'2017-12-12"', 'UA\O\O\O\O\O"',
19977 ,'UAa',...),
(2017,4,12,12,2,'2017-12-12"','Ua\0\0\o0\o\o0"',
19977,'UA"',...)

£\ Altinity

20

Small inserts can your ClickHouse server

pmmm o . r A

. I ClickHouse
Small inserts

[
|

clients |
.

] ' _ Y,

£ Altinity 21

A 4
Lots of small parts == and
U d,
redhly] WRITE AMPLIFICATION!
inserted >I
part l
I Fully
---- merged
Tl . - part
I
T

II

£ Altinity 22

Fix #1: Use big batches in your application

#!/bin/bash

INSERT='INSERT+INTO+ontime+Format+CSVWithNames'

cat test.csv | curl -X POST --data-binary @- \
"http://localhost:8123/?query=${INSERT}"

£1 Altinity 23

Fix #2: Enable async inserts

Buffer writes

INSERT INTO default.ontime_ref VALUES
(2017,4,12,12,2,'2017-12-12"','UAa\0\0\O\O\O',19977,'UA"',...),

automatically

— oy
e e e o =

Table
ontime_ref

Notify client
on commit

Persistent
Storage

https://kb.altinity.com/altinity-kb-queries-and-syntax/async-inserts/

£ Altinity

24

https://kb.altinity.com/altinity-kb-queries-and-syntax/async-inserts/

Enable async inserts using property settings

CREATE SETTINGS PROFILE IF NOT EXISTS ‘async_profile‘
Use async insert

ON CLUSTER '{cluster}' -
SETTINGS =" and wait for answer
async_insert = 1, <----""
wait for async insert=1, _ - ==~ Waitthis long

async insert busy timeout ms = 10000+ — ~

async insert use adaptive busy timeout = C NS Don't let

=~ = ClickHouse set
automatic values

CREATE USER IF NOT EXISTS async ON CLUSTER '{cluster}'
IDENTIFIED WITH sha256 password BY 'topsecret' HOST ANY
SETTINGS PROFILE ‘async profile’ -~ _

~

\~

= = = User with settings

N\ Altinity 25

Problem #3

Bad queries

A 4
Small differences in queries make big differences in response
FeT T , 4.25x slower A
10.64 sec | _ _ _ o o o o 1 2.72 sec I
114 KB RAM ! 12.38 GB RAM
s 21,891x more RAM used T T !
SELECT Carrier, SELECT Carrier, FlightDate,
avg (DepDelay)AS Delay avg (DepDelay) AS Delay,
FROM ontime ref unigExact (TailNum) AS Aircraft
GROUP BY Carrier FROM ontime ref
ORDER BY Delay DESC GROUP BY Carrier, FlightDate
LIMIT 50 ORDER BY Delay DESC
LIMIT 50
Simple aggregate, short More complex aggregates, longer
GROUP BY key with few values GROUP BY with more values

£ Altinity 27

VN
A 4

How does ClickHouse process a query with aggregates?

SELECT Carrier, ClickHouse Server a_/
avg (DepDelay)AS Delay |||
FROM ontime

Parse/Plan
GROUP BY Carrier /
ORDER BY Delay DESC ~—

Scan
—Carrier— Delay— |
| B6 | 12.058290698785067 | /
| EV | 12.035012037703922 | "! Merge/Sort
| NK | 10.437692933474269 |

£ Altinity 28

A 4
How does a ClickHouse thread do aggregation?
GROUP BY Partial
@ Key Aggregates
— Scan AL => 4259/1070,
2385/415, ...
N— DL => 20663/1198,
25166/2711, ... Sean Thread
Hash Table
Other
Scan
Result Merge/Sort Thread
Hash

Tables

n Altinity 29

A 4
We can optimize queries by choosing better aggregates
CoT T T T 15% faster VT T E
12.72 sec v i _______ 12.30 sec :
12.38 GB RAM | ' 450 GB RAM ;
___________] 5.4x less RAM used o ___]
SELECT Carrier, FlightDate, SELECT Carrier, FlightDate,
avg (DepDelay) AS Delay, avg (DepDelay) AS Delay,
unigExact (TailNum) AS Aircraft uniqHLL12 (TailNum) AS Aircraft
FROM ontime FROM ontime
GROUP BY Carrier, FlightDate GROUP BY Carrier, FlightDate
ORDER BY Delay DESC ORDER BY Delay DESC
LIMIT 50 LIMIT 50
unigExact stores each unique unigHLL12 uses fixed size
value in a hash table that grows HyperLoglLog structure

£ Altinity 30

Here’s some magic with optimizing joins

SELECT o.Dest, any(a.Name) AS AirportName, P
count (Dest) AS Flights 12.685 sec

FROM ontime ref o '39.18 MB RAM |
!

JOIN default.airports a ON a.IATA = o.Dest 'm e -

GROUP BY Dest ORDER BY Flights
DESC LIMIT 10

SELECT o.Dest, a.Name AS AirportName, o.Flights

FROM (:' _________
SELECT Dest, count(Dest) AS Flights 10.524 sec
FROM ontime ref GROUP BY Dest)E:%-IKe)
JOIN default.airports a ON a.IATA = o.Dest
ORDER BY Flights DESC LIMIT 10

N\ Altinity

J

31

Let’s look more deeply at what’s happening in the scan

SELECT . . . FROM ontime o airports a ON PV SN -T-1

ATL 576
1501
3302

ORD 255

N\ Altinity

.
Partial

S
c
al - aggregates
n Dest € |ATA J9r=9
’
N ,
/s
) -

Hartsfield Jackson Atlanta International Airport
Hartsfield Jackson Atlanta International Airport
Hartsfield Jackson Atlanta International Airport

Chicago O'Hare International Airport

32

Where did those query stats come from?

SELECT
event time,
type,
is initial query,
query duration ms / 1000 AS duration,
read rows,
read bytes,
result rows,
formatReadableSize (memory usage) AS memory,
query
FROM system.query log
WHERE (user = 'default') AND (type = 'QueryFinish')
ORDER BY event time DESC
LIMIT 50

N\ Altinity

33

Fixing queries efficiently

#1: Run against real data (and plenty of it
#2: Isolate slow queries and optimize them

#3: Rinse and repeat

N\ Altinity

34

Problem #4

Insufficient resources

Is your query still ? Throw money at it!

SELECT Carrier, toYear (FlightDate) AS Year,
(sum(Cancelled) / count(*)) * 100. AS cancelled pct

FROM test.ontime bad partitioning

GROUP BY Carrier, Year HAVING cancelled pct > 1.

ORDER BY cancelled pct DESC LIMIT 10

[SETTINGS min bytes to use direct io = 1]

—Carrier——Year— cancelled pct—
1. | G4 | 2020 | 16.733186040434276 |

10 rows in set. Elapsed: EMVAE-T-Tel Processed 196.51 million
rows, 982.57 MB (ELFCIEE&8EENS W CWA- SR KoY By VS8 Uiy A3)

n Altinity 36

Better hardware can make slow queries fast...

Effects of partitioning choices with more resources
B Cold Run M Hot Run

6
4
2
0
By Year (4vCPU, 125 By Carrier+Month By Carrier+Month
MB/s 10) (4vCPU, 125 MB/s (32vCPU, 1000 MB/s
10) 10)

£ Altinity

37

4-Course | | @

Menu

~
[]

Query (@

Insert -A.
Merge

Update ‘\/@/\'

\ - - /
ClickHouse Keeper

£\ Altinity © 2026 Altinity, Inc. 38

Common issues with resource management

#1: Testing real workloads (large & concurrent)
#2:. Detecting trouble: CPU, I0Wait, RAM, Network
#3:. Scaling quickly when trouble hits

#4: Fixing apps that overuse resources

£\ Altinity © 2026 Altinity, Inc. 39

Problem #5

Migrations from
non-compatible
databases to ClickHouse

Some migrations to ClickHouse just work

PostgreSQL, MySQL ClickHouse

£ Altinity

MH Table-to-Table Migration

\ /

SELECT Carrier, avg(DepDelay)AS Delay FROM ontime ref
WHERE TailNum = 'N812AW' AND Year = 2016 GROUP BY Carrier

41

A 4
Others are more “challenging”
Events Splunk ClickHouse Table
with full _ with
text N skip
indexes . MH , |nd?xes
_

This is -

full-text

search

1
\
\ | SELECT Carrier, TailNum, avg(DepDelay) AS Delay FROM ontime ref

4 WHERE hasToken (TailNum, 'N812') OR hasToken (TailNum, 'N573')
GROUP BY Carrier, TailNum

£ Altinity 42

We need to decide how to implement full text search

®>\

Full text index — In beta,
potentially very large

ClickHouse

2]

Bloom filter index
(ngram_Dbf) — Small but
needs careful tuning

SELECT Carrier, TailNum, avg(DepDelay) AS Delay FROM ontime ref
WHERE TailNum LIKE 'N812%' OR TailNum LIKE 'N573%'
GROUP BY Carrier, TailNum

@ LIKE operator — It’s fast and ngram_bf index makes it faster

£ Altinity

43

Migrating different database types to ClickHouse
#1: Test queries under realistic load
#2: Rethink slow query patterns

#3: It takes time to tune indexes and queries

N\ Altinity 44

Server log messages are your friend

SELECT Carrier, TailNum, avg(DepDelay) AS Delay FROM
rhodges 7273b.ontime bloom filter

WHERE TailNum LIKE '$N812%' OR TailNum LIKE '$N128%'
GROUP BY Carrier, TailNum ORDER BY Delay DESC LIMIT 10

SETTINGS send logs level='debug'

... 2026.02.18 07:00:54.615183 [31]
{caf33ae2-abee-424d-b4f0-0ac022edab32} <Debug> executeQuery: (from

... 2026.02.18 07:00:54.630439 [31]
{caf33ae2-abee-424d-b4£f0-0ac022edab32} <Debug>
rhodges 7273b.ontime bloom filter (SelectExecutor): [RNeley

threads

[::££££:10.129.59.185]:60032, user: admin) (query 1, line 1) SELECT ..

"TailNum Ngrambf' has dropped 14033/24089 granuleslERARJeTe) dAE T JF-TelJeI-I- I

N\ Altinity

45

Avoiding the Five Performance Problems

Tune your schema to reduce I/O

Make inserts as big as possible

Test queries on real data and fix the slow ones

Test hardware on realistic workloads and increase it before you hit
problems

e Design and test migrations from other databases carefully!

Don’t assume ClickHouse will be fast. Prove it!!!

£ Altinity 46

< ALTINITY

Thank you!

Questions?

Robert Hodges
CEO Altinity

https.//altinity.com
We're hiring!

© 2026 Altinity, Inc.

47

https://altinity.com

Icons- Transparent

Clickhouse (Native)
Cluster

@050 et g

Director Cluster Swarm Cluster

@00 e E@g%gj
@050 e el

£\ Altinity

Keeper

® =

® =

@ =

Other

¥ «
I [

Icons-Stackable on White Backgrounds

Clickhouse (Native)

Director Cluster Swarm Cluster Keeper
Cluster

DatDa(:
O @@@ Daf @[g@é]i) @

oo v @
ot w W @

£\ Altinity

| |

ﬂ]

Other

i
o <«
I [P

Icons-Stackable on Dark Backgrounds

Kg:Lcslch&:use (Native)\ f Director Cluster b /Swarm Cluster\ f Keeper r Other h
. = = =
@ g0 D D@[;%}q@d © =Y E
X e W5 @ | WVE
DeDalll | ~ = = —
@ 950 Daf %@GO Q) =y E
Q@ e egs @ | = W Y E
@ Yo @ ey | = ¥ &
——
DeLef|| ~ = o a
\@ @@@ IS / \D@(] D©<]) @ &E’] v [_EJ/

