
© 2025 Altinity, Inc. © 2025 Altinity, Inc. 1

September Project Antalya Roundup:

Fresh Features to Run ClickHouse®
Faster and Cheaper on Data Lakes

11

Alexander Zaitsev - Altinity CTO
Robert Hodges - Altinity CEO

10 September 2025

© 2025 Altinity, Inc. © 2025 Altinity, Inc. 222

Altinity® is a Registered Trademark of Altinity, Inc.
ClickHouse® is a registered trademark of ClickHouse, Inc.;

Altinity is not affiliated with or associated with ClickHouse, Inc.

Altinity.Cloud Enterprise Support

Run Open Source ClickHouse® Better

© 2025 Altinity, Inc.

ClickHouse shared nothing architecture

3

Vectorized,
parallel query

engine

Columnar
data in block

storage

Columnar
data and data

lake files

Replication, sharding,
distributed query

Cluster
consensus

IS3-Compatible Object Storage

MergeTree and Parquet Files

Caching

ClickHouse Keeper

Caching

ClickHouse Server

© 2025 Altinity, Inc.

Web Analytics

Gaming

Mobile Ads

Crypto

Hi-Frequency
Trading

SIEM

LLM Monitoring

Observability

2025

10
0

 P
et

ab
yt

es

4

Trouble in paradise: data size is outstripping capacity…

© 2025 Altinity, Inc. 5

…Leading to pressure on storage and compute cost

Overprovisioning wastes compute

Wasted resources

Productive use

Pr
ov

is
io

ne
d

C
PU

Cloud Block Storage

S3 Storage

Block storage with replication is
10x more expensive

Not to mention: manageability and stability

© 2025 Altinity, Inc. © 2025 Altinity, Inc.

Project Antalya makes
ClickHouse run fast and
cheap on shared data

6

IIceberg Storage

Parquet Files on S3

Iceberg

Native ClickHouse
Cluster

Swarm Cluster

Native MergeTree

● Extends native
ClickHouse capabilities

● Adds Iceberg for shared
storage

● Adds swarm clusters for
scalable compute

● 100% open source

6

Catalog

© 2025 Altinity, Inc.

Altinity.Cloud can deploy the Antalya stack anywhere

7

IUnlimited Shared Data on S3 Object Storage

Parquet data in Iceberg tables, Apache Hive, and standalone files

Native ClickHouse
Cluster Realtime

Swarm Cluster

Native Merge Tree

Altinity.Cloud Managed Kubernetes
Environment

Catalog

Web UI

Altinity.Cloud
Management

Plane

ClickHouse Query

External
services like

Spark

Batch
Swarm Cluster

© 2025 Altinity, Inc.

Antalya Project Plan

8

Antalya Build
✓ Swarm distributed query
✓ Swarm auto-registration
✓ Parquet Metadata Cache

Public Launch
✓ Iceberg swarm support
✓ Swarm cache locality
✓ Ice REST catalog
✓ Altinity.Cloud launch

Full Read Support
✓ AWS Table Buckets
✓ Iceberg loading
● AWS Glue certification
● Simple part export

Infinity Table Engine
● Query model
● Partition export from

replicated tables
● Transactional transfer

Q1 2025 Q2 2025 Q3 2025 Q4 2025

© 2025 Altinity, Inc.

Highlighted New Features

9

● AWS S3 Table buckets
● Ice-rest-catalog management
● Writing to Iceberg from ClickHouse

© 2025 Altinity, Inc.

S3 Table Buckets

● Introduced at the end of 2024
● Uses S3 as a storage
● Parquet is a primary format
● Accessible via Iceberg rest and Glue APIs
● Build-in catalog management features (e.g. compaction)

10

© 2025 Altinity, Inc.

Connecting from ClickHouse – Problem

PyIceberg connection to S3 buckets:
rest_catalog = load_catalog(
 Catalog_name,
 **{
 "type": "rest",

"warehouse":"arn:aws:s3tables:<Region>:<accoun
tID>:bucket/<bucketname>",
 "uri":
"https://s3tables.<Region>.amazonaws.com/icebe
rg",
 "rest.sigv4-enabled": "true",
 "rest.signing-name": "s3tables",
 "rest.signing-region": "<Region>"
 }
)

11

ClickHouse connection to Iceberg –
does not work for S3 Tables:
CREATE DATABASE iceberg
ENGINE =
DataLakeCatalog('https://s3tables.<Region>.ama
zonaws.com/iceberg')
SETTINGS
catalog_type = 'rest',
auth_header = '[HIDDEN]',
warehouse =
'arn:aws:s3tables:<Region>:<accountID>:bucket/
<bucketname>'

Currently not supported in
ClickHouse

See
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-in
tegrating-open-source.html

https://s3tables
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-open-source.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-open-source.html

© 2025 Altinity, Inc.

Connecting from ClickHouse – ice-rest-catalog

CREATE DATABASE s3tables1
ENGINE = DataLakeCatalog('http://ice-rest-catalog:5000')
SETTINGS
catalog_type = 'rest',
auth_header = '[HIDDEN]',
warehouse = 'arn:aws:s3tables:<Region>:<accountID>:bucket/<bucketname>'

12

See https://github.com/Altinity/ice/tree/master/examples/s3tables

Authenticates to AWS and
proxies requests

http://ice-rest-catalog:5000
https://github.com/Altinity/ice/tree/master/examples/s3tables

© 2025 Altinity, Inc.

Connecting from ClickHouse – upstream vs Antalya

Upstream ClickHouse does not work:

2025.06.19 05:01:38.947571 [799] {85d354ee-ba11-4ac1-89e7-3d8684a7e449} <Error>
RestCatalog(s3://ice-rest-catalog:5000): Code: 48. DB::Exception: Unexpected location format:
s3://3b8aac22-bb5f-4548-y5ta9hipodcohbq9o6pwbbiht7dcgusw2b--table-s3. (NOT_IMPLEMENTED)

Antalya builds allow file locations outside of the warehouse location:
SELECT _path, _file FROM s3tables1."btc.transactions" LIMIT 1 FORMAT Vertical

Row 1:
──────
_path:
5397fe31-0492-4c62-1tggx1u3jtyuca9y8tg45ym7qunkquse1b--table-s3/data/1755084192112-a5d77700bb4a6b0a0f6c571c25
9c1a0086b938b04f82a8a823b772467e344a60.parquet
_file: 1755084192112-a5d77700bb4a6b0a0f6c571c259c1a0086b938b04f82a8a823b772467e344a60.parquet

13

Location is pretty much
random for S3 table buckets

© 2025 Altinity, Inc.

Connecting from ClickHouse – Altinity.Cloud

14

© 2025 Altinity, Inc.

Catalog Management in ice-rest-catalog

● MANIFEST_COMPACTION – merge multiple manifests
● DATA_COMPACTION – merge multiple Parquet files
● SNAPSHOT_CLEANUP – delete old snapshots
● ORPHAN_CLEANUP – delete non-referenced files in data and metadata paths

Automatically, configured in .ice-rest-catalog.yaml – part of the catalog service.

On demand with ice-rest-catalog perform-maintenance [–dry-run] [type]

15

https://github.com/Altinity/ice/blob/master/examples/scratch/.ice-rest-catalog.yaml

© 2025 Altinity, Inc.

Writing to Iceberg from ClickHouse

16

Writing to local Iceberg tables (25.7+):
https://github.com/ClickHouse/ClickHouse/pull/82692

● Only metadata files are updated
● No catalog support

https://github.com/ClickHouse/ClickHouse/pull/82692

© 2025 Altinity, Inc.

Writing to Iceberg from ClickHouse using ice

17

1. Insert into catalog warehouse location

INSERT INTO FUNCTION s3(
's3://$CATALOG_S3_BUCKET_NAME/aws-public-blockchain/btc/data/2025-05-13.parquet')
SELECT *
FROM s3('s3://aws-public-blockchain/v1.0/btc/transactions/date=2025-05-13/*.parquet', NOSIGN)

2. Run ice with –no-copy flag to create a snapshot

ice insert aws-public-blockchain.btc -p --no-copy --skip-duplicates \
s3://$CATALOG_S3_BUCKET_NAME/aws-public-blockchain/btc/data/*.parquet

Matches internal structure,
but not reqiored

See https://github.com/Altinity/ice/

https://github.com/Altinity/ice/

© 2025 Altinity, Inc.

Writing to Iceberg from ClickHouse using ice –watch

INSERT INTO FUNCTION s3(
's3://$CATALOG_S3_BUCKET_NAME/aws-public-blockchain/btc/external-data/2025-05-13.parquet')
SELECT *
FROM s3('s3://aws-public-blockchain/v1.0/btc/transactions/date=2025-05-13/*.parquet', NOSIGN)

ice insert aws-public-blockchain.btc -p --no-copy --skip-duplicates \
s3://$CATALOG_S3_BUCKET_NAME/aws-public-blockchain/btc/external-data/*.parquet \
--watch="$CATALOG_SQS_QUEUE_URL"

18

Catalog

IIceberg Data

Parquet Files on S3 Storage
–watch
detects new data

Commits new
snapshot

See https://github.com/Altinity/ice/tree/master/examples/s3watch

● AWS SQS is used to deliver S3 bucket events
● Ice service is running in a background
● Available in Altinity.Cloud

select * from
iceberg.”btc.transactions”

data s available for query

https://github.com/Altinity/ice/tree/master/examples/s3watch

© 2025 Altinity, Inc.

Writing to Iceberg from ClickHouse using ice –watch

INSERT INTO FUNCTION s3(
's3://altialya-2fv4arm7-iceberg/aws-public-blockchain/btc/external-data/{_partition_id}.parquet')
PARTITION BY date
SELECT date, * REPLACE (
 toDateTime64(block_timestamp, 6) as block_timestamp,
 toDateTime64(last_modified, 6) as last_modified
)
FROM s3('s3://aws-public-blockchain/v1.0/btc/transactions/date=*/*.parquet', NOSIGN)
WHERE date between '2025-01-01' and '2025-01-31'
SETTINGS output_format_parquet_use_custom_encoder=0

19

Requires a lot of RAM!

Nanoseconds are not
supported by Iceberg

Custom encoder may
produce incorrect
data types

© 2025 Altinity, Inc.

Writing to Iceberg from ClickHouse – WIP

ALTER TABLE my_table EXPORT PARTITION|PART to s3(...)

20

● Export from from MergeTree to Parquet
● Preserves ORDER BY (no re-sorting)
● Atomic
● Retriable
● Memory efficient

© 2025 Altinity, Inc.

Upstream ClickHouse vs Project Antalya

21

Upstream Antalya

Swarm discovery 25.3+ yes

Catalog databases yes yes

Hosted catalogs n/a yes

Swarm queries Partially, using table functions yes

Parquet metadata cache not supported yes

Iceberg metadata cache 25.4+ yes

S3 table buckets not supported yes

High performance Iceberg writes Direct inserts (25.7+) yes, via ice

© 2025 Altinity, Inc.

Project Antalya Roadmap

22

1. Open source release – 04/25
2. ice – open source tools for loading and running Iceberg REST catalogs –

05/25
3. Performance report – 06/25
4. Altinity.Cloud release with catalog and swarms support – 06/25
5. AWS S3 tables support - 07/25
6. Altinity Antalya 25.6 release – 09/25
7. Writing to Iceberg tables – Q3/25
8. Infinity (MergeTree+Iceberg) tables – Q4/25
9. Ingest swarms – Q1/26

© 2025 Altinity, Inc.

Infinity Tables – Seamless extension of MergeTree to Iceberg

Subquery

Transactional partition transfer

MergeTree Swarm Cluster

23

Infinity Table - Tracks partition locations

Iceberg

Subquery

SELECT sum(output_count)
FROM btc.transactions

INSERT INTO
btc.transactions
VALUES(...)

Keeper

“Watermark”

© 2025 Altinity, Inc.

Project Antalya resources

● Check out Altinity documentation for overview and quickstart

https://docs.altinity.com/altinityantalya/

● Project Antalya code is in the Altinity ClickHouse repo (log issues there)

https://github.com/Altinity/ClickHouse

● Read “Getting Started with Altinity’s Project Antalya” to find out more

https://altinity.com/blog/getting-started-with-altinitys-project-antalya

● Join the Altinity Public Slack to find out more: https://altinity.com/slack

24

https://docs.altinity.com/altinityantalya/
https://github.com/Altinity/ClickHouse
https://altinity.com/blog/getting-started-with-altinitys-project-antalya
https://altinity.com/slack

© 2025 Altinity, Inc.

Summary

● Project Antalya is extending ClickHouse to use Iceberg as table storage
● Swarm clusters enable compute/storage separation on reads
● Caches are vital to ensure performance
● Additional tricks include spot instances, fast operator reconciliation, and

diagnostic queries
● Ice and ice-rest-catalog provide infrastructure
● Altinity.Cloud provides fully managed solution
● Upcoming attractions:

○ Production ready writes to Iceberg
○ Infinity tables
○ Ingest swarms

25

© 2025 Altinity, Inc. © 2025 Altinity, Inc. 26

Thank you! Questions?
Learn more and join our

community
https://altinity.com/slack

Q4 meetups: NYC,
London, Atlanta, SFO

https://altinity.com Project Antalya

https://altinity.com/slack

