September Project Antalya Roundup:

Fresh Features to Run ClickHouse®
Faster and Cheaper on Data Lakes

Alexander Zaitsev - Altinity CTO
Robert Hodges - Altinity CEO

10 September 2025

£} Altinity © 2025 Altinity, Inc.

75 ALTINITY

Run Open Source ClickHouse® Better
Altinity.Cloud = Enterprise Support

Altinity® is a Registered Trademark of Altinity, Inc.
ClickHouse® is a registered trademark of ClickHouse, Inc.;
Altinity is not affiliated with or associated with ClickHouse, Inc.

£} Altinity © 2025 Altinity, Inc.

VN
A 4

ClickHouse shared nothing architecture Replication, sharding,

/ distributed query
ClickHouse Server f.\
.\/:. Cluster

Vectorized,
parallel query —
engine ¢ / consensus
TA f@
Columnar \ o
data in block A

storage

!
(@
Columnar S3-Compatible Object Storage >
data and data ClickH K
lake files MergeTree and Parquet Files ickouse Reeper

N Altinity 5

Trouble in paradise: data size is

Hi-Frequency
Trading

Crypto
Mobile Ads

Gaming

Web Analytics

£ Altinity

SIEM

capacity...

LLM Monitoring

Observability

...Leading to pressure on

Block storage with replication is
10x more expensive

Cloud Block Storage

S3 Storage

Not to mention:

N\ Altinity

and

Overprovisioning wastes compute

2
o
O
o
D
<=
9o
@
>
<
o

© 2025 Altinity, Inc.

cost

Wasted resources

Productive use

and

Project Antalya makes
ClickHouse run fast and
cheap on

Native ClickHouse
Cluster

Swarm Cluster

e Extends native
ClickHouse capabilities

e Adds Iceberg for shared

Native MergeTree storage

e Adds swarm clusters for
scalable compute

Iceberg Storage .
S s e 100% open source
Parquet Files on S3 N7
el Iceberg

ALTINITY

Altinity.Cloud can deploy the Antalya stack anywhere

£ Altinity

Web Ul |

v

Altinity.Cloud

[ClickHouse Query]

Management
Plane

External
services like
Spark
1

o *[E T 1

\/

Q5@ lafllsf

I |

I |

—1 | I

Native ClickHouse | [> <] I [> <] |

Cluster I Realtime I Batch I

N l 1 Swarm Cluster 1 Swarm Cluster

Native Merge Tree
I Catalog 5

Ntiﬁit?.(ﬁoud Managed Kubernetes
Environment

Unlimited Shared Data on S3 Object Storage

Parquet data in Iceberg tables, Apache Hive, and standalone files

Antalya Project Plan

Public Launch
v Iceberg swarm support
v Swarm cache locality
v Ice REST catalog

A Infinity Table Engine
e Query model
e Partition export from
replicated tables
Y, e Transactional transfer

_ v Altinity.Cloud launch
[Antalya Build)
v Swarm distributed query v
v Swarm auto-registration v
v Parquet Metadata Cache o
[
- /
._
Q1 2025 Q2 2025

N\ Altinity

Full Read Support

AWS Table Buckets

Iceberg loading
AWS Glue certification
Simple part export

Q3 2025 Q4 2025

Highlighted New Features

e AWS S3 Table buckets
® [ce-rest-catalog management
e Writing to Iceberg from ClickHouse

N\ Altinity

S3 Table Buckets

e Introduced at the end of 2024
e Uses S3 as a storage

e Parquetis a primary format

e Accessible via Iceberg rest and Glue APIs

e Build-in catalog management features (e.g. compaction)

/

N\ Altinity © 2025 Altinity, Inc.

Connecting from ClickHouse — Problem

ClickHouse connection to Iceberg — Pylceberg connection to S3 buckets:

does not work for S3 Tables rest _catalog = load catalog(

Catalog name,

CREATE DATABASE iceberg **{

ENGINE = "type": "rest",

DataLakeCatalog('https://s3tables.<Region>.ama

zonaws .com/iceberg') "warehouse":"arn:aws:s3tables:<Region>:<accourn

SETTINGS tID>:bucket/<bucketname>",

catalog type = 'rest', "uri":

auth header = '[HIDDEN]', "https://s3tables.<Region>.amazonaws.com/icebe

warehouse = rg",

'arn:aws:s3tables:<Region>:<accountID>:bucket/ "rest.sigvé4-enabled": "true",

<bucketname>' "rest.signing-name": "s3tables",
"rest.signing-region": "<Region>"

}
)
See \

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-in Currently not supported in
tegrating-open-source.html ClickHouse

N\ Altinity 11

https://s3tables
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-open-source.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-tables-integrating-open-source.html

Connecting from ClickHouse - ice-rest-catalog

Parquet Files on S3 Storage

ClickHouse Cluster Ice-rest-catalog

S3 Table Buckets
—B8—

CREATE DATABASE s3tablesl Authenticates to AWS and
ENGINE = DatalakeCatalog('http://ice-rest-catalog:5000"') proxies requests
SETTINGS

catalog type = 'rest',

auth header = '[HIDDEN]',

warehouse = 'arn:aws:s3tables:<Region>:<accountID>:bucket/<bucketname>'

See https://aithub.com/Altinity/ice/tree/master/examples/s3tables

N\ Altinity 12

http://ice-rest-catalog:5000
https://github.com/Altinity/ice/tree/master/examples/s3tables

Connecting from ClickHouse — upstream vs Antalya

Upstream ClickHouse does not work:

2025.06.19 05:01:38.947571 [799] {85d354ee-ball-4acl-89e7-3d8684a7e449} <Error>
RestCatalog(s3://ice-rest-catalog:5000) : Code: 48. DB::Exception: Unexpected location format:
s3://3b8aac22-bb5£f-4548-y5ta%hipodcohbg9o6pwbbiht7dcgusw2b--table-s3. (NOT_IMPLEMENTED)

Antalya builds allow file locations outside of the warehouse location:

SELECT _path, _file FROM s3tablesl."btc.transactions" LIMIT 1 FORMAT Vertical Location is pretty much
random for S3 table buckets

Row 1:

_path:
5397fe31-0492-4c62-1tggxlu3jtyucady8tgd5Sym7qunkquselb--table-s3/data/1755084192112-a5d77700bb4a6b0a0£6c571c25
9cl1a0086b938b04£82a8a823b772467e344a60.parquet

_file: 1755084192112-a5d77700bb4a6b0a0£6c571c259¢c1a0086b938b04£82a8a823b772467e344a60.parquet

N\ Altinity 13

Connecting from ClickHouse — Altinity.Cloud

£ Altinity

Connect to Data Lake Catalog for poc X
Catalog Type Access Level

Altinity.Cloud © Read Read/Write

Catalog

s3tablel [S3_TABLE]

Database *
my_s3_table

Connect Query
1 CREATE DATABASE "my_s3_table" ON CLUSTER '{cluster}'
2 ENGINE = DatalakeCatalog('http://ice-rest-catalog
-s3tablel:5000")

3 SETTINGS

4 catalog_type = 'rest’,

5 auth_header = 'Authorization: Bearer [TOKEN]',
6 warehouse = 'arn:aws:s3tables:us-east-1

CLOSE CONNECT

14

Catalog Management in ice-rest-catalog

MANIFEST_COMPACTION — merge multiple manifests

DATA_COMPACTION — merge multiple Parquet files

SNAPSHOT_CLEANUP - delete old snapshots

ORPHAN_CLEANUP — delete non-referenced files in data and metadata paths

Automatically, configured in .ice-rest-catalog.yaml — part of the catalog service.

On demand with ice-rest-catalog perform-maintenance [-dry-run] [type]

N\ Altinity

15

https://github.com/Altinity/ice/blob/master/examples/scratch/.ice-rest-catalog.yaml

Writing to Iceberg from ClickHouse

Writing to local Iceberg tables (25.7+):
https://github.com/ClickHouse/ClickHouse/pull/82692

e Only metadata files are updated
e No catalog support

N\ Altinity

16

https://github.com/ClickHouse/ClickHouse/pull/82692

Writing to Iceberg from ClickHouse using ice

Matches internal structure,

. . but not reqiored
1. Insert into catalog warehouse location E

INSERT INTO FUNCTION s3(

's3://$CATALOG_S3 BUCKET NAME/aws-public-blockchain/btc/data/2025-05-13.parquet"')

SELECT *

FROM s3('s3://aws-public-blockchain/vl.0/btc/transactions/date=2025-05-13/*.parquet', NOSIGN)

2. Runice with -no-copy flag to create a snapshot

ice insert aws-public-blockchain.btc -p --no-copy --skip-duplicates \
s3://$CATALOG_S3 BUCKET NAME/aws-public-blockchain/btc/data/*.parquet

See https://qgithub.com/Altinity/ice/
N\ Altinity

17

https://github.com/Altinity/ice/

Writing to Iceberg from ClickHouse using ice -watch

INSERT INTO FUNCTION s3(

's3://$CATALOG_S3 BUCKET NAME/aws-public-blockchain/btc/external-data/2025-05-13.parquet')
SELECT *

FROM s3('s3://aws-public-blockchain/vl.0/btc/transactions/date=2025-05-13/*.parquet', NOSIGN)

ice insert aws-public-blockchain.btc -p --no-copy --skip-duplicates \
s3://$CATALOG S3 BUCKET NAME/aws-public-blockchain/btc/external-data/*.parquet \
--watch="$CATALOG_SQS QUEUE URL"

e AWS SQS is used to deliver S3 bucket events

Commits new

® |ce service is running in a background snapshot
e Available in Altinity.Cloud ¥y T\
A -) data s available for query

Iceberg Data

_______ »EL_____.-_____»
—watch

select * from
detects new data Catalog iceberg.”btc.transactions”

Parquet Files on S3 Storage

See https://qgithub.com/Altinity/ice/tree/master/examples/s3watch
N\ Altinity 18

https://github.com/Altinity/ice/tree/master/examples/s3watch

Writing to Iceberg from ClickHouse using ice -watch

INSERT INTO FUNCTION s3(

's3://altialya-2fv4arm7-iceberg/aws-public-blockchain/btc/external-data/{_partition id}.parquet"')

PARTITION BY date

SELECT date, * REPLACE (
toDateTime64 (block timestamp, 6) as block_ timestamp,
toDateTime64 (last modified, 6) as last modified

)

Nanoseconds are not
supported by Iceberg

FROM s3('s3://aws-public-blockchain/v1l.0/btc/transactions/date=*/*_ parquet', NOSIGN)

WHERE date between '2025-01-01' and '2025-01-31'
SETTINGS output format parquet use custom encoder=0

Requires a lot of RAM!

N\ Altinity

Custom encoder may
produce incorrect
data types

19

Writing to Iceberg from ClickHouse — WIP

ALTER TABLE my table EXPORT PARTITION|PART to s3(...)

Export from from MergeTree to Parquet
Preserves ORDER BY (no re-sorting)
Atomic

Retriable

Memory efficient

£ Altinity

20

Upstream ClickHouse vs Project Antalya

Swarm discovery
Catalog databases
Hosted catalogs

Swarm queries

Parquet metadata cache
Iceberg metadata cache
S3 table buckets

High performance Iceberg writes

£\ Altinity

Upstream

25.3+

yes

n/a

Partially, using table functions
not supported

25.4+

not supported

Direct inserts (25.7+)

Antalya
yes
yes
yes
yes
yes
yes
yes

yes, via ice

21

Project Antalya Roadmap

Altinity Antalya 25.6 release — 09/25
Writing to Iceberg tables — Q3/25

Infinity (MergeTree+iceberg) tables — Q4/25
Ingest swarms — Q1/26

© 00 g4 O

N\ Altinity

22

Infinity Tables — Seamless extension of MergeTree to Iceberg

SELECT sum(output_count) ®
FROM btc.transactions @
1

! o Y
------ > Infinity Table - Tracks partition locations e \ /.
1 1 Keeper
Subquery | I Subquery
P —— oo oo “Watermark”

v

INSERT INTO @@@ D@(]D@(] . v u

btc.transactions = - -9
VALUES(...) [> <]

MergeTree Swarm Cluster

\ Transactional partition transfer /

Iceberg

23

N\ Altinity

Project Antalya

e Check out Altinity documentation for overview and quickstart
https://docs.altinity.com/altinityantalya

e Project Antalya code is in the Altinity ClickHouse repo (log issues there)
https: ithub.com/Altinity/ClickHouse

e Read “Getting Started with Altinity’s Project Antalya” to find out more

etting-started-with-altinitys-project-antalya

e Join the Altinity Public Slack to find out more: https://altinity.com/slack ‘

£ Altinity 24

https://docs.altinity.com/altinityantalya/
https://github.com/Altinity/ClickHouse
https://altinity.com/blog/getting-started-with-altinitys-project-antalya
https://altinity.com/slack

Summary

Project Antalya is extending ClickHouse to use Iceberg as table storage
Swarm clusters enable compute/storage separation on reads

Caches are vital to ensure performance

Additional tricks include spot instances, fast operator reconciliation, and
diagnostic queries

lce and ice-rest-catalog provide infrastructure

Altinity.Cloud provides fully managed solution

e Upcoming attractions:

o Production ready writes to Iceberg

o Infinity tables

o Ingest swarms

1 Altinity © 2025 Altinity, Inc. 25

you! Questions?

https://altinity.com/slack

Project Antalya

© 2025 Altinity, Inc.

26

https://altinity.com/slack

