
© 2025 Altinity, Inc. © 2025 Altinity, Inc. 1

Five Things Every New
ClickHouse® User Should Know

Part 1: Applications

11

Robert Hodges - Altinity CEO
22 July 2025

© 2025 Altinity, Inc. © 2025 Altinity, Inc. 222

Altinity® is a Registered Trademark of Altinity, Inc.
ClickHouse® is a registered trademark of ClickHouse, Inc.;

Altinity is not affiliated with or associated with ClickHouse, Inc.

Altinity.Cloud Enterprise Support

Run Open Source ClickHouse® Better

© 2025 Altinity, Inc. 3

What’s a
ClickHouse

???

© 2025 Altinity, Inc.

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse® is a real-time analytic database

41.8k GitHub Watchers
Can’t Be Wrong!

ClickHouse

Observability

LLM
Monitoring

CDN
Telemetry

SIEM

Market
Trading

Real-time
Marketing

4

© 2025 Altinity, Inc. 5

Lesson #1

ClickHouse runs anywhere.
Find the one that works for

you.

© 2025 Altinity, Inc.

ClickHouse installation is great on Linux! (Including WSL2)

6

curl https://clickhouse.com | sh

✅ Easiest install ever 🗷 Hard to configure server

© 2025 Altinity, Inc.

For a more conventional install use apt or rpm

7

ClickHouse Official Builds

Great for early adopters
Monthly + 2 LTS releases per year

1 year of support
https://clickhouse.com/install

Altinity Stable Builds

Great for enterprises seeking stability
Based on upstream LTS releases

3 years of support, feature backports
https://builds.altinity.cloud

Ubuntu example
sudo apt-get install -y clickhouse-server clickhouse-client
sudo systemctl start clickhouse-server

https://clickhouse.com/docs/install
https://clickhouse.com/install
https://docs.altinity.com/altinitystablebuilds/
https://builds.altinity.cloud

© 2025 Altinity, Inc.

Use Docker on MacOS or for clusters (docker compose)

mkdir $HOME/clickhouse-data

docker run -d --name altinity-stable-build \
 --ulimit nofile=262144:262144 \
 --network=host \
 --volume=$HOME/clickhouse-data:/var/lib/clickhouse \
 altinity/clickhouse-server:24.8.14.10501.altinitystable

8

Altinity Stable Builds
Tag: altinity/clickhouse-server

ClickHouse Official Builds
Tag: clickhouse/clickhouse-server

© 2025 Altinity, Inc.

kube-system namespace

Run ClickHouse on Kubernetes to build clusters quickly

Altinity
ClickHouse
Operator

your-favorite namespace
Apache 2.0 source,

distributed as Docker
image

kubectl -f apply
demo.yaml

Best practice deployment

“Adjust reality”

ClickHouse
Installation
Resource

9

© 2025 Altinity, Inc.

Or you could skip the setup and just run in a cloud

Altinity.Cloud
https://altinity.com

ClickHouse Cloud
https://clickhouse.com

10

SaaS version of ClickHouse with
Snowflake-like convenience and

built-in tools.

Cloud platform with SaaS and
BYOC models. Runs any version

of open source ClickHouse.

https://altinity.com
https://clickhouse.com

© 2025 Altinity, Inc. 11

Lesson #2

Pay attention to partitioning,
sorting, and compression.

They make column storage
work.

© 2025 Altinity, Inc.

ClickHouse tables are built for fast query

12

CREATE TABLE default.ontime_ref(
 `Year` UInt16,
 `Quarter` UInt8,
 `Month` UInt8,
 `FlightDate` Date,
 `Carrier` FixedString(2),
 . . .
)
ENGINE = MergeTree
PARTITION BY Year
ORDER BY (Carrier, FlightDate)

Columns default to
LZ4 compression

Standard engine for
fast analytics

How to break table
into parts

How to sort rows
within parts

© 2025 Altinity, Inc.

Finding airlines with the most cancellations in a year
SELECT Carrier, toYear(FlightDate) AS Year,
 (sum(Cancelled) / count(*)) * 100. AS cancelled_pct
FROM default.ontime_ref
GROUP BY Carrier, Year HAVING cancelled_pct > 1.
ORDER BY cancelled DESC LIMIT 10

 ┌─Carrier─┬─Year─┬──────cancelled_pct─┐
1. │ G4 │ 2020 │ 16.733186040434276 │
2. │ EA │ 1989 │ 10.321500966388536 │
3. │ WN │ 2020 │ 9.284307653599388 │
. . .
10 rows in set. Elapsed: 0.674 sec. Processed 196.51 million
rows, 982.57 MB (291.68 million rows/s., 1.46 GB/s.)10 rows

13

© 2025 Altinity, Inc.

ClickHouse stores table data in compressed columns

14

ClickHouse

Read only selected columns

Rows minimally or not compressed Columns highly compressed

PostgreSQL, MySQL

Read all columns in row

© 2025 Altinity, Inc.
15

Visualizing effect of columns and compression on I/O

61 GB
(100%)

937 MB
(1.5%)

17 MB
(.027%)

2 MB
(.0034%)

Read every row

Read 3 columns:
Carrier,

FlightDate,
Cancelled

Read 3
compressed

columns

Read 3
compressed

columns over
8 threads

© 2025 Altinity, Inc.

Best practice: partition by time

16

CREATE TABLE default.ontime_ref(. . .)
ENGINE = MergeTree
PARTITION BY Year ORDER BY (Carrier, FlightDate)

Name: 2018_0_5_1_10

Name: 2017_0_5_1_9

Parts

Name: 2018_6_6_0_10

Rule of thumb:

Choose partitions that
result in ~1000 parts
or less

© 2025 Altinity, Inc.

Why it’s better to partition by time

17

© 2025 Altinity, Inc.

Order by increasing cardinality, with tenant first

18

CREATE TABLE default.ontime_ref(. . .)
ENGINE = MergeTree
PARTITION BY Year ORDER BY (Carrier, FlightDate)

Sparse
index

Name: 201905_510_815_3

Carrier FlightDate Etc.Carrier
FlightDate

Sorted,
compressed,

indexed column

© 2025 Altinity, Inc.

Compress to taste, any time you want to

19

CREATE TABLE default.ontime_ref(. . .)
ENGINE = MergeTree
PARTITION BY Year ORDER BY (Carrier, FlightDate)
TTL FlightDate + INTERVAL 6 MONTH RECOMPRESS CODEC (ZSTD(1)),
 FlightDate + INTERVAL 12 MONTH RECOMPRESS CODEC (ZSTD(10))

Automatically increase
compression over time

© 2025 Altinity, Inc.

Figure out compression with amazing system tables!

20

SELECT
 count(),
 formatReadableSize(sum(data_compressed_bytes),
 formatReadableSize(sum(data_uncompressed_bytes)
FROM system.columns
WHERE (database = 'default') AND (`table` = 'ontime_ref')
AND (name IN ('Carrier', 'FlightDate', 'Cancelled'))

Other great tables: system.parts and system.tables

© 2025 Altinity, Inc. 21

Lesson #3

ClickHouse likes big parts!

Help out by making inserts as big
as possible.

© 2025 Altinity, Inc.

Small inserts can crush your ClickHouse server

22

ClickHouse

Storage

Small inserts
from many
clients

MergeTree
mytable

© 2025 Altinity, Inc.

Lots of small parts == slow queries and high merge load

23

Unmerged,
freshly

inserted
part Fully

merged
part

Query efficiency

© 2025 Altinity, Inc.

Fix #1: Use big batches in your application

24

#!/bin/bash
INSERT='INSERT+INTO+mytable+Format+CSVWithNames'
cat test.csv | curl -X POST --data-binary @- \
 "http://localhost:8123/?query=${INSERT}"

© 2025 Altinity, Inc.

Fix #2: Enable async inserts

INSERT INTO test VALUES
(0,0,'2024-01-01 00:00:01','reading',43.31,'');

25

Table
test

Persistent
Storage

Buffer writes
automatically

Notify client
on commit

https://kb.altinity.com/altinity-kb-queries-and-syntax/async-inserts/

https://kb.altinity.com/altinity-kb-queries-and-syntax/async-inserts/

© 2025 Altinity, Inc.

Enable async inserts using property settings

CREATE SETTINGS PROFILE IF NOT EXISTS `async_profile`
ON CLUSTER '{cluster}'
SETTINGS
 async_insert = 1,
 wait_for_async_insert=1,
 async_insert_busy_timeout_ms = 10000,
 async_insert_use_adaptive_busy_timeout = 0
;

CREATE USER IF NOT EXISTS async ON CLUSTER '{cluster}'
 IDENTIFIED WITH sha256_password BY 'topsecret' HOST ANY
 SETTINGS PROFILE `async_profile`
;

26

Use async insert
and wait for answer

Wait this long

Don’t let
ClickHouse set

automatic values

User with settings

© 2025 Altinity, Inc.

Fix #3: Use Kafka to buffer data from upstream producers

27

ClickHouse

Storage

Decouples producers from
ClickHouse consumer

Table test

© 2025 Altinity, Inc.

Using the Kafka table engine to read from Kafka

Topic

Contains
messages

MergeTree Table

Stores rows

Materialized View

Streams rows

Kafka Table Engine

Consumes
messages

28

https://kb.altinity.com/altinity-kb-integrations/altinity-kb-kafka/

https://kb.altinity.com/altinity-kb-integrations/altinity-kb-kafka/

© 2025 Altinity, Inc. 29

Lesson #4

Joins are different in ClickHouse.
Learn to use them properly.

© 2025 Altinity, Inc.

ClickHouse can do joins (of course!)
SELECT Dest, Name as AirportName, count(*) Flights
FROM default.ontime_ref o
LEFT JOIN default.dot_airports a ON (a.AirportID = o.DestAirportID)
GROUP BY Dest, AirportName ORDER BY Flights DESC LIMIT 10

┌─Dest─┬─AirportName──────────────────────────────────────┬──Flights─┐
│ DEN │ Denver International │ 12103062 │
│ ATL │ Hartsfield Jackson Atlanta International Airport │ 10605117 │
. . .
│ LAS │ McCarran International Airport │ 4361486 │
└──────┴──┴──────────┘
10 rows in set. Elapsed: 2.581 sec. Processed 196.52 million rows,
982.84 MB (76.13 million rows/s., 380.75 MB/s.)

30

© 2025 Altinity, Inc.

ClickHouse has a rich set of algorithms and join types

31

Join Algorithms
hash

partial_merge
parallel_hash
grace_hash

full_sorting_merge
direct

Join Types
inner join

left [outer] join
full [outer] join

right [outer] join
cross join
semi join
anti join
asof join

paste join
Caveat: BI-style large table
joins are “difficult”

© 2025 Altinity, Inc.

How ClickHouse does joins between tables

32

Left Side Table
(Big)

Result

Hash Join Algorithm

Right Side Table
(Small)

In-RAM
Hash
Table

Filter

© 2025 Altinity, Inc.

Dictionaries are an alternative to joins

33

My Table

Result

Load

Dictionary
Source
Table

In-RAM
Hash
Table

Your Table

Result

Shared by
all queries

ClickHouse, MySQL,
Redis, flat file...

© 2025 Altinity, Inc.

Creating a dictionary on a table
CREATE DICTIONARY default.dot_airports_dict
(
 `AirportID` UInt64,
 `City` String,
 `State` String,
 `Name` String
)
PRIMARY KEY AirportID
SOURCE(CLICKHOUSE(TABLE 'dot_airports' DB 'default'))
LIFETIME(MIN 180 MAX 300)
LAYOUT(FLAT())

https://clickhouse.com/docs/en/sql-reference/statements/create/dictionary/

34

https://clickhouse.com/docs/en/sql-reference/statements/create/dictionary/

© 2025 Altinity, Inc.

Restructure joins to reduce data scanning
SELECT Dest, Name, count(*) c, avg(ArrDelayMinutes) ad
 FROM default.ontime_ref
LEFT JOIN default.dot_airports ON DestAirportID = AirportID
GROUP BY Dest, Name HAVING c > 100000
ORDER BY ad DESC LIMIT 10

SELECT Dest, Name, c AS flights, ad
FROM (SELECT DestAirportID, any(Dest) as Dest,
 count(*) c, avg(ArrDelayMinutes) ad

 FROM default.ontime_ref
 GROUP BY DestAirportID HAVING c > 100000
 ORDER BY ad DESC LIMIT 10) a

LEFT JOIN default.dot_airports ON DestAirportID = AirportID

Faster

15.820 sec.

3.472 sec.

Smaller base
query

35

© 2025 Altinity, Inc.

month count of
readings

count of
restarts

min temp
reading

month count of
readings

count of
restarts

min temp
reading

msg_type sensor_id time temperature

How can we handle table joins on very large tables??

Use case: join sensor restart with temperature reading data

36

Restart times
msg_type
‘restart’ sensor_id time

Temperature readings

Aggregates on joined data

msg_type sensor_id time temperature

JOIN key

msg_type
‘reading’ sensor_id time temperature

month count of
readings

count of
restarts

min temp
reading

© 2025 Altinity, Inc.

Hint: Aggregation runs in a single pass

= 2

Sum = 6
Count = 3

1 2 3 1 3 5 0 5 0 0

Sum = 9
Count = 3

Sum = 5
Count = 4

6 + 9 + 5

3 + 3 + 4

37

No need to
move data

Parallelizes!

Intermediate
results are

reusable

© 2025 Altinity, Inc.

Conditional aggregation on different entities in one table

38

SELECT toYYYYMM(time) AS month,
 countIf(msg_type = 'reading') AS readings,
 countIf(msg_type = 'restart') AS restarts,
 minIf(temperature, msg_type = 'reading') AS min,
 round(avgIf(temperature, msg_type = 'reading')) AS avg,
 maxIf(temperature, msg_type = 'reading') AS max
FROM test.readings_multi WHERE sensor_id = 3
GROUP BY month ORDER BY month ASC

┌──month─┬─readings─┬─restarts─┬───min─┬─avg─┬────max─┐
│ 201901 │ 44640 │ 1 │ 0 │ 75 │ 118.33 │
│ 201902 │ 40320 │ 0 │ 68.09 │ 81 │ 93.98 │
│ 201903 │ 15840 │ 0 │ 73.19 │ 84 │ 95.3 │
└────────┴──────────┴──────────┴───────┴─────┴────────┘

© 2025 Altinity, Inc. 39

Lesson #5

ClickHouse prioritizes speed and
scalability over anything else.

Lean on the trade-offs.

© 2025 Altinity, Inc. 40

Size Speed

Immutable data Eventual consistency

© 2025 Altinity, Inc.

 CREATE TABLE sakila.film (
 `film_id` UInt16,
 `title` String,
 . . .
 `_version` UInt64 DEFAULT 0
)
ENGINE = ReplacingMergeTree(_version)
ORDER BY language_id, studio_id, film_id

ReplacingMergeTree deduplicates rows in ORDER BY

41

Row key goes on right
(if you have one)

Other cols go
to left

Pro tip: Use PRIMARY KEY to
reduce size of index if ORDER
BY is long

© 2025 Altinity, Inc.

How ReplacingMergeTree works

42

0

3

1001

.

1001

INSERT

_version
film

_id

UPDATE

DELETE

language_id

5 1001

stu
dio_id

Eventually
consistent
replacement
of rows

De-duplicate on these columns

© 2025 Altinity, Inc.

INSERT INTO sakila.film VALUES
(1001,'Blade Runner - Director''s Cut','Best. Sci-fi. Film.
Ever.',...,3)

SELECT title, release_year
FROM film WHERE film_id = 1001

┌─title─────────────────────────┬─release_year─┐
│ Blade Runner - Director's Cut │ 1982 │
└───────────────────────────────┴──────────────┘
┌─title────────┬─release_year─┐
│ Blade Runner │ 1982 │
└──────────────┴──────────────┘

Updating a row in the RMT table

43

Unmerged
rows!

© 2025 Altinity, Inc.

Rows are replaced when merges occur

44

0

3

1001 1 . . .

. . .

1001 2

Part

Part

Merged Part

3 1001 2

X

Pro tip: never assume rows
will merge fully

?

© 2025 Altinity, Inc.

SELECT film_id, title
 FROM sakila.film FINAL
 WHERE film_id = 1001

┌─title─────────────────────────┬─release_year─┐
│ Blade Runner - Director's Cut │ 1982 │
└───────────────────────────────┴──────────────┘

https://altinity.com/blog/clickhouse-replacingmergetree-explained-the
-good-the-bad-and-the-ugly

FINAL keyword merges data dynamically

45

Adds initial scan to
merge rows

https://altinity.com/blog/clickhouse-replacingmergetree-explained-the-good-the-bad-and-the-ugly
https://altinity.com/blog/clickhouse-replacingmergetree-explained-the-good-the-bad-and-the-ugly

© 2025 Altinity, Inc.

ClickHouse has a raft of tables built on similar principles

46

● ReplacingMergeTree
● SummingMergeTree
● AggregatingMergeTree
● CollapsingMergeTree
● VersionedCollapsingMergeTree
● CoalescingMergeTree

1001 1

key v2v1

1001 2

key v2v1

1001 1 2

© 2025 Altinity, Inc. © 2025 Altinity, Inc.

Wrap-up and
Questions

47

© 2025 Altinity, Inc.

Summary of 5 things every beginner should know

48

● Pick the right install for your work. There are lots of them!
● Pay close attention to partitioning, ordering, and compression in tables.
● Make your inserts as big as possible.
● Joins are different in ClickHouse. You need to think about the mechanisms.
● Immutable data and eventual consistency are the foundation of big systems.

Lean in on features that use them.

© 2025 Altinity, Inc. © 2025 Altinity, Inc. 49

Thank you!
Questions?
Contact us to learn more about
Altinity.Cloud and Enterprise Support
https://altinity.com
https://altinity.com/slack

Join our Open Source
Analytics Festival

Where:
 IBM Silicon Valley Lab
 555 Bailey Ave
 San Jose, CA 95141
When: Thursday 31 July 2025

https://altinity.com
https://altinity.com/slack
https://lu.ma/embed/event/evt-rPwewmmiP26jOJx/simple
https://lu.ma/embed/event/evt-rPwewmmiP26jOJx/simple

