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ClickHouse® & OpenTelemetry
Tracing a Cloud-Native Database + 
Storing Traces with ClickHouse
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Build better on open source ClickHouse
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Agenda
Brief Introductions/Review:

● What is Distributed Tracing?
● What is OpenTelemetry?
● Why ClickHouse?

ClickHouse for Observability

Demo #1

Observability for ClickHouse

Demo #2!





2024-07-01 09:35:34 231ms GET /home 200

A humble log…
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What is Distributed Tracing?
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2024-07-01 09:35:34 231ms GET /home 200

Our humble log…
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2024-07-01 09:35:34 spanId:4f2c traceId:214a 
231ms GET /home 200

Make it a trace span:
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Metrics

Aggregable

Is there a problem?

Traces

Request-Scoped

Where is the problem?

Logs

Verbose, time-stamped records

What is the problem?

Observability is not 
any one signal
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Distributed 
Tracing is the 
“Killer App”

Understand 
complete request 

flows

Create a real-time 
map of system 
topology and 
dependencies

Derive metrics 
from the richness 
of trace metadata

Enrich logs and 
metrics with 

context

12 



Introducing OpenTelemetry



What is 
OTel?
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● Specifications:
○ OTLP
○ Semantic Conventions
○ W3C Trace Context

● Libraries & Tools:
○ Language-specific SDKs & APIs
○ Instrumentation Libraries
○ The OpenTelemetry Collector
○ Extensions

● Community
○ Vendor-neutral, Open Source
○ 2nd most active CNCF project



What is OpenTelemetry?
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What is 
ClickHouse?
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● Apache 2.0
● SQL Compatible
● Columnar
● Really really fast
● Petabyte scale (for now)
● Eats cardinality for breakfast



Why 
ClickHouse?
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Telemetry is 
WORM:
Write-Once
Read-Many



Part
Index   Columns

Part
Index   Columns

Rewritten, Bigger Part
Index   Columns
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Update and delete also rewrite parts
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Unmerged, 
freshly 

inserted 
part Fully 

merged 
part 

Query efficiency



More 
Benefits
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● Time-friendly
● Easy cleanup
● TTL & tiered storage
● Extreme cardinality
● Excellent compression
● Flexible schema



Observability with 
ClickHouse

Storing and querying distributed traces from applications
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Observability 
Integrations
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OpenTelemetry Collector Exporter

Grafana Datasource

Kafka Connector

Coroot, SigNoz, ClickStack

Quesma

Iceberg + Parquet…



The OpenTelemetry Collector
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Demo
Traces with ClickHouse + OpenTelemetry
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ClickStack®



ClickHouse Architecture
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How queries are processed



Part in Storage

ClickHouse Architecture: Processing an Insert
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INSERT INTO sdata 
VALUES
(15, 'TEMP', . . .), 
(15, 'TEMP', . . .) 

2 rows in set. Elapsed: 0.003 sec.

ClickHouse Server

Parse/Plan

Respond

Load

Part in RAM

Sort rows ( table ORDER BY )



Part in Storage

How can we make this more efficient? Parallelize!
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set max_insert_threads=4

insert into ontime_test 
select * from ontime   
  where toYear(FlightDate) 
  between 2000 and 2001

2 rows in set. Elapsed: 0.003 sec.

ClickHouse Server

Parse/Plan

Respond

Load

Parts in RAM



How does ClickHouse process a query with aggregates?
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SELECT Carrier,
  avg(DepDelay)AS Delay 
FROM ontime
GROUP BY Carrier
ORDER BY Delay DESC

┌─Carrier─┬──────────────Delay─┐
│ B6      │ 12.058290698785067 │
│ EV      │ 12.035012037703922 │
│ NK      │ 10.437692933474269 │
. . .

ClickHouse Server

Parse/Plan

Merge/Sort

Scan
In-RAM 
Hash 

Tables

Parts in Storage



How does a ClickHouse thread do aggregation?
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Merge/Sort

Scan Thread

Parts in Storage

AL => 4259/1070, 
2385/415, …

DL => 20663/1198, 
25166/2711, …
… Scan Thread 

Hash Table

Other 
Scan 

Thread 
Hash 

Tables

Result

GROUP BY 
Key

Partial 
Aggregates



Observability for 
ClickHouse
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Built-in metrics, logs, and traces



System 
Tables
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● Metric Log
● Part Log
● Query Log
● Query Views Log
● Trace Log
● Distributed Traces*
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Built-in Spans Table

System table created dynamically

Enable tracing via setting (on query 
or user profile) or request headers



$ clickhouse-client \ 
  --opentelemetry-traceparent \

"00-4bf92f...929d0e0e4736-00f067aa0ba902b7-01"

Using a TraceID Header:
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SET opentelemetry_start_trace_probability = 1;

Always Initialize a Trace:
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Demo
Tracing ClickHouse Queries
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Client-Side
Tracing
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Supported ClickHouse Clients:

● Java
● Golang
● Python



Call to action!
Please help improve the OpenTelemetry 
Auto-Instrumentation Libraries
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Final 
Thoughts
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● Distributed tracing is awesome (for 
applications especially)

● Consider ClickHouse as a massively 
scalable telemetry datastore

● Consider CH-based O11y tools for 
their performance with high 
cardinality signals

● Built-in observability is awesome
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Thank you! 
Questions?
Contact us to learn more and join our 
community:
https://altinity.com
https://altinity.com/slack 
https://github.com/Altinity/tracing-clickhouse 

Blog post comparing
Observability Platforms

https://altinity.com
https://altinity.com/slack
https://github.com/Altinity/antalya-examples

