
Altinity® is a Registered Trademark of Altinity, Inc. ClickHouse® is a registered trademark of
ClickHouse, Inc.; Altinity is not affiliated with or associated with ClickHouse, Inc.

1

ClickHouse® & OpenTelemetry
Tracing a Cloud-Native Database +
Storing Traces with ClickHouse

11

222

Josh Lee
Open Source Advocate

Maciej Bak
Support Engineer

Build better on open source ClickHouse

3

Agenda
Brief Introductions/Review:

● What is Distributed Tracing?
● What is OpenTelemetry?
● Why ClickHouse?

ClickHouse for Observability

Demo #1

Observability for ClickHouse

Demo #2!

2024-07-01 09:35:34 231ms GET /home 200

A humble log…

5

What is Distributed Tracing?

7

2024-07-01 09:35:34 231ms GET /home 200

Our humble log…

8

2024-07-01 09:35:34 spanId:4f2c traceId:214a
231ms GET /home 200

Make it a trace span:

9

Metrics

Aggregable

Is there a problem?

Traces

Request-Scoped

Where is the problem?

Logs

Verbose, time-stamped records

What is the problem?

Observability is not
any one signal

11

Distributed
Tracing is the
“Killer App”

Understand
complete request

flows

Create a real-time
map of system
topology and
dependencies

Derive metrics
from the richness
of trace metadata

Enrich logs and
metrics with

context

12 

Introducing OpenTelemetry

What is
OTel?

1414

● Specifications:
○ OTLP
○ Semantic Conventions
○ W3C Trace Context

● Libraries & Tools:
○ Language-specific SDKs & APIs
○ Instrumentation Libraries
○ The OpenTelemetry Collector
○ Extensions

● Community
○ Vendor-neutral, Open Source
○ 2nd most active CNCF project

What is OpenTelemetry?

15

What is
ClickHouse?

1616

● Apache 2.0
● SQL Compatible
● Columnar
● Really really fast
● Petabyte scale (for now)
● Eats cardinality for breakfast

Why
ClickHouse?

1717

Telemetry is
WORM:
Write-Once
Read-Many

Part
Index Columns

Part
Index Columns

Rewritten, Bigger Part
Index Columns

18

Update and delete also rewrite parts

19

Unmerged,
freshly

inserted
part Fully

merged
part

Query efficiency

More
Benefits

2020

● Time-friendly
● Easy cleanup
● TTL & tiered storage
● Extreme cardinality
● Excellent compression
● Flexible schema

Observability with
ClickHouse

Storing and querying distributed traces from applications

21

Observability
Integrations

2222

OpenTelemetry Collector Exporter

Grafana Datasource

Kafka Connector

Coroot, SigNoz, ClickStack

Quesma

Iceberg + Parquet…

The OpenTelemetry Collector

24

25

27

28

Demo
Traces with ClickHouse + OpenTelemetry

29

30

32

ClickStack®

ClickHouse Architecture

33

How queries are processed

Part in Storage

ClickHouse Architecture: Processing an Insert

34

INSERT INTO sdata
VALUES
(15, 'TEMP', . . .),
(15, 'TEMP', . . .)

2 rows in set. Elapsed: 0.003 sec.

ClickHouse Server

Parse/Plan

Respond

Load

Part in RAM

Sort rows (table ORDER BY)

Part in Storage

How can we make this more efficient? Parallelize!

35

set max_insert_threads=4

insert into ontime_test
select * from ontime
 where toYear(FlightDate)
 between 2000 and 2001

2 rows in set. Elapsed: 0.003 sec.

ClickHouse Server

Parse/Plan

Respond

Load

Parts in RAM

How does ClickHouse process a query with aggregates?

36

SELECT Carrier,
 avg(DepDelay)AS Delay
FROM ontime
GROUP BY Carrier
ORDER BY Delay DESC

┌─Carrier─┬──────────────Delay─┐
│ B6 │ 12.058290698785067 │
│ EV │ 12.035012037703922 │
│ NK │ 10.437692933474269 │
. . .

ClickHouse Server

Parse/Plan

Merge/Sort

Scan
In-RAM
Hash

Tables

Parts in Storage

How does a ClickHouse thread do aggregation?

37

Merge/Sort

Scan Thread

Parts in Storage

AL => 4259/1070,
2385/415, …

DL => 20663/1198,
25166/2711, …
… Scan Thread

Hash Table

Other
Scan

Thread
Hash

Tables

Result

GROUP BY
Key

Partial
Aggregates

Observability for
ClickHouse

38

Built-in metrics, logs, and traces

System
Tables

3939

● Metric Log
● Part Log
● Query Log
● Query Views Log
● Trace Log
● Distributed Traces*

4040

Built-in Spans Table

System table created dynamically

Enable tracing via setting (on query
or user profile) or request headers

$ clickhouse-client \
 --opentelemetry-traceparent \

"00-4bf92f...929d0e0e4736-00f067aa0ba902b7-01"

Using a TraceID Header:

41

SET opentelemetry_start_trace_probability = 1;

Always Initialize a Trace:

42

Demo
Tracing ClickHouse Queries

43

44

Client-Side
Tracing

4545

Supported ClickHouse Clients:

● Java
● Golang
● Python

Call to action!
Please help improve the OpenTelemetry
Auto-Instrumentation Libraries

46

Final
Thoughts

4747

● Distributed tracing is awesome (for
applications especially)

● Consider ClickHouse as a massively
scalable telemetry datastore

● Consider CH-based O11y tools for
their performance with high
cardinality signals

● Built-in observability is awesome

48

Thank you!
Questions?
Contact us to learn more and join our
community:
https://altinity.com
https://altinity.com/slack
https://github.com/Altinity/tracing-clickhouse

Blog post comparing
Observability Platforms

https://altinity.com
https://altinity.com/slack
https://github.com/Altinity/antalya-examples

