
©	2017	Percona1

Vadim	Tkachenko

Supercharge	Your	Analytics	with	
ClickHouse
Webinar
September	14th,	2017

CTO,	Percona
Alexander	Zaitsev
CTO,	Altinity

©	2017	Percona2

Analytic	database	landscape

©	2017	Percona3

Commercial	
solutions	– fast	
and	expensive

Vertica

RedShift

Teradata
• Etc

The	cost	scales	with	your	data

©	2017	Percona4

Open	Source:	
somewhat	slow,	
sometime	buggy.	
But	free

InfiniDB	(now	MariaDB	ColumnStore)

InfoBright

GreenPlum	(started	as	commerical)

Hadoop	systems

Apache	Spark

©	2017	Percona5

ClickHouse – fast	and	free!
OpenSourced in	Jun	2016

©	2017	Percona6

ClickHouse story

Yandex.ru	- Russian	search	engine	

Yandex	Metrika	- Russian	“Google	Analytics”

Interactive	Ad	Hoc	reports	at	multiple	petabytes
• 30+	billions	of	events	daily

No	commercial	solution	would	be	cost	effective	and	no	OpenSource	solution	to	handle	this	scale.

That’s	how	ClickHouse	was	born

©	2017	Percona7

ClickHouse is	extremely	fast	and	scalable.
"We	had no	choice,	but	make	it	fast"	by ClickHouse developers

©	2017	Percona8

Initial	Requirements

Fast.	Really	fast Data	processing	
in	real	time

Capable	of	
storing	petabytes	

of	data

Fault-tolerance	in	
terms	of	

datacenters	

Flexible	query	
language

©	2017	Percona9

Technical	details

Vectorized	processing

Massively	Parallel	Processing	

Shared	nothing

Column	store	with	late	materialization	(like	C-Store	and	Vertica):
• Data	compression
• Column	locality
• No	random	reads

(more	in	details,	in	Russian,	https://clickhouse.yandex/presentations/meetup7/internals.pdf)

©	2017	Percona10

Vectorized	processing
Data	is	represented	as	small	single-dimensional	arrays	(vectors),	easily	accessible	for	CPUs.

The	percentage	of	instructions	spent	in	interpretation	logic	is	reduced	by	a	factor	equal	to	the	vector-
size

The	functions	that	perform	work	now	typically	process	an	array	of	values	in	a	tight	loop

Tight	loops	can	be	optimized	well	by	compilers,	enable	compilers	to	generate	SIMD	instructions	
automatically.	

Modern	CPUs	also	do	well	on	such	loops,	out-of-order	execution	in	CPUs	often	takes	multiple	loop	
iterations	into	execution	concurrently,	exploiting	the	deeply	pipelined	resources	of	modern	CPUs.	

It	was	shown	that	vectorized	execution	can	improve	data-intensive	(OLAP)	queries	by	a	factor	50.	

©	2017	Percona11

Column-oriented

*	The	image	taken	from	http://www.timestored.com/time-series-data/what-is-a-column-oriented-database

©	2017	Percona12

Efficient	execution
SELECT Referer, count(*) AS count
FROM hits
WHERE CounterID = 1234 AND Date >= today() - 7
GROUP BY Referer
ORDER BY count DESC LIMIT 10
(*	example	from	https://clickhouse.yandex/presentations/meetup7/internals.pdf)

Vectorized	
processing

Read	only	
needed	columns:	

CounterID,	
Referer,	Date

Compression

With	index	
(CounterID,	Date)	
- fast	discard	of	
unneeded	blocks

©	2017	Percona13

Single	Server	- MPP
Use	multiple	CPU	cores	on	the	single	server

Real	case:	Apache	log	from	the	real	web	site	– 1.56	billion	records

Query:	
SELECT extract(request_uri,'(w+)$') p,sum(bytes) sm,count(*) c
FROM apachelog
GROUP BY p
ORDER by c DESC limit 100

Query	is	suited	for	parallel	execution	– most	time	spent	in	extract	function

©	2017	Percona14

Execution	on	single	server
56	threads	/	28	cores	|	Intel(R)	Xeon(R)	CPU	E5-2683	v3	@	2.00GHz

Query	execution	time

With	1	thread	allowed:	823.646	sec	~	1.89	mln records/sec

With	56	threads	allowed:	23.587	sec	~	66.14	mln records/sec

Speedup:	34.9x	times

DATABASE PERFORMANCE
MATTERS

Database	Performance	MattersDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	Matters

©	2017	Percona16

Query	3
SELECT y, request_uri, cnt
FROM (SELECT access_date y, request_uri, count(*) AS cnt

FROM apachelog
GROUP BY y, request_uri
ORDER BY y ASC)

ORDER BY y,cnt DESC LIMIT 1 BY y
Less	suitable	for	parallel	execution	– serialization	to	build	a	
temporary	table	for	internal	subquery
Speedup:	6.4x	times

DATABASE PERFORMANCE
MATTERS

Database	Performance	MattersDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	Matters

©	2017	Percona18

More	details	in	the	blog	post:	
https://www.percona.com/blog/2017/09/13/massive-parallel-log-
processing-clickhouse/

©	2017	Percona19

Data	distribution
If	a	single	server	is	not	enough

©	2017	Percona20

Distributed	query

SELECT	foo	FROM	distributed_table

SELECT	foo	FROM	local_table GROUP	BY	col1

• Server	1

SELECT	foo	FROM	local_table GROUP	BY	col1

• Server	2

SELECT	foo	FROM	local_table GROUP	BY	col1

• Server	3

©	2017	Percona21

NYC	taxi	benchmark
CSV	227	GB,	~1.3	bln rows
SELECT passenger_count, avg(total_amount) FROM trips GROUP BY
passenger_count

*	Taken	from	https://clickhouse.yandex/presentations/meetup7/internals.pdf

N	Servers 1 3 140
Time,	sec 1.224 0.438 0.043
Speedup x2.8 x28.5

©	2017	Percona22

Reliability

Any	number	of	replicas

Any	replication	topology

Multi-master

Cross-DC

Asynchronous	(for	speed)
• è Delayed	replicas,	possible	stale	data	reads
• More	on	data	distribution	and	replication	https://www.altinity.com/blog/2017/6/5/clickhouse-data-
distribution

©	2017	Percona23

Benchmarks!

©	2017	Percona24

ClickHouse vs	Spark	vs	MariaDB	ColumnStore
Wikipedia	page	Counts,	loaded	full	with	the	year	2008,	~26	billion	
rows
https://www.percona.com/blog/2017/03/17/column-store-database-benchmarks-
mariadb-columnstore-vs-clickhouse-vs-apache-spark/

©	2017	Percona25

ClickHouse vs	Spark	vs	MariaDB	ColumnStore

©	2017	Percona26

Cloud:	ClickHouse vs	RedShift
https://www.altinity.com/blog/2017/6/20/clickhouse-vs-redshift

5	queries	based	on	NYC	taxi	dataset

Query	1:	SELECT dictGetString('taxi_zones', 'zone', toUInt64(pickup_location_id)) AS zone,
count() AS c

FROM yellow_tripdata_staging
GROUP BY pickup_location_id
ORDER BY c DESC LIMIT 10

RedShift	1	instance	/	3	instances	of	ds2.xlarge	(4	vCPU	/	31	GiB	memory)

ClickHouse	1	instance	r4.xlarge	(4	vCPU	/	30.5	GiB	memory)

©	2017	Percona27

seconds

query

sec

query

©	2017	Percona28

By	Yandex,	see	[2]

©	2017	Percona29

ClickHouse	– use	cases

Adv	networks	data	

Web/App	analytics	

Ecommerce/Telecom	logs	

Online	games	

Sensor	data	

Monitoring	

©	2017	Percona30

ClickHouse – wrong	cases

Not	an	OLTP

Not	a	key-value	store

Not	a	document	store

No	UPDATEs/DELETEs	– does	not	support	data	modification

©	2017	Percona31

ClickHouse	- limitations

Custom	SQL	dialect

As	a	consequence	-- limited	ecosystem	(can	not	fit	to	standard	one)

No	deletes/updates:
• but	there	are	mutable	table	types	(engines)
• there	is	a	way	to	connect	to	external	updatable	data	(dictionaries)

Somewhat	hard	to	manage	for	now	- no	variety	of	tools	to	work	with

Somewhat	young

©	2017	Percona32

Resources	for	users
The	Documentation	is	available	in	English!
• https://clickhouse.yandex/docs/en/

GUI	Tool
• http://tabix.io

Apache	Superset	https://superset.incubator.apache.org supports	ClickHouse
• a	modern,	enterprise-ready	business	intelligence	web	application

Grafana integration
• https://grafana.com/plugins/vertamedia-clickhouse-datasource

ODBC	&	JDBC	drivers	available

©	2017	Percona33

©	2017	Percona34

Who	is	using	ClickHouse?

Well,	beside	Yandex

Carto
• https://carto.com/blog/inside/geospatial-processing-with-clickhouse/

Percona
• We	integrate	ClickHouse	as	part	of	our	Percona	Monitoring	and	Management	software

CloudFlare
• https://blog.cloudflare.com/how-cloudflare-analyzes-1m-dns-queries-per-second/

©	2017	Percona35

ClickHouse at	CloudFlare

33	Nodes

8M+	inserts/sec

2PB+	disk	size

More	on	CloudFlare experience
• https://www.altinity.com/sfmeetup2017

ClickHouse Demo on MemCloud
Kodiak Data and Altinity now Offer a Cloud Version of ClickHouse

36

1. FASTEST MPP Open Source DBMS

2. Cutting Edge Cloud for Big Data Apps and Processing

3. World-class ClickHouse Expertise

Try the ClickHouse on MemCloud demo here
http://clickhouse-demo.memcloud.works/

©	2017	Percona37

Final	words

Simply	try	it	for	your	Analytics/Big	Data	case!

Need	more	info	- http://clickhouse.yandex

•@VadimTk

My	Contact:	Vadim@percona.com

©	2017	Percona38

Get	Your	Tickets	for	Percona	Live	Europe!	

Championing	Open	Source	Databases
▪ MySQL,	MongoDB,	Open	Source	Databases
▪ Time	Series	Databases,	PostgreSQL,	RocksDB
▪ Developers,	Business/Case	Studies,	Operations
▪ September	25-27th,	2017
▪ Radisson	Blu Royal	Hotel,	Dublin,	Ireland

Last	Year’s	Conference	Sold	Out!
Reserve	your	spot	ASAP.

©	2017	Percona39

Talk	to	Percona	Experts	at	AWS	Re:Invent!
Database	Performance	for	Cloud	Deployments
▪Percona	Support	and	Managed	Services
• Amazon	RDS,	Aurora,	Roll	Your	Own
•MySQL/MariaDB/MongoDB
• Reduce	costs	and	optimize	performance

▪Percona	Monitoring	and	Management	Demos
• Point-in-time	visibility	and	historical	trending	of	database	performance
• Detailed	query	analytics

▪Booth	#1138

ClickHouse Webinar

Alexander Zaitsev

LifeSteet, Altinity

Altinity

Who am I
• Graduated Moscow State University in 1999

• Software engineer since 1997

• Developed distributed systems since 2002

• Focused on high performance analytics since 2007

• Director of Engineering in LifeStreet

• Co-founder of Altinity

Agenda

• LifeStreet ClickHouse implementation experience

• MySQL and ClickHouse

• Ad Tech company (ad exchange, ad server, RTB, DSP, DMP) since 2006

• 10,000,000,000+ events/day

• 10+ fact tables, 500+ dimensions, 100+ metrics

• Internal and external users, algos, MLs

• Different solutions tried and used in different years, including MySQL,

Oracle, Vertica, many internal POCs

• Now -- ClickHouse

Flashback: ClickHouse at 08/2016

• 1-2 months in Open Source

• Internal Yandex product – no other installations

• No support, roadmap, communicated plans

• 3 official devs

• A number of visible limitations (and many invisible)

• Stories of other doomed open-sourced DBs

Develop production system with “that”?

ClickHouse
is/was

missing:

• Transactions

• Constraints

• Consistency

• UPDATE/DELETE

• NULLs (not anymore)

• Milliseconds

• Implicit type conversions

• Full SQL support

• Partitioning by any column (date only)

• Cluster management tools

But we tried and succeeded

Migration problem: basic things do not fit

Main Challenges

• Design efficient schema

– Use ClickHouse bests

– Workaround limitations

• Design sharding and replication

• Reliable data ingestion

• Client interfaces

Typical schema: “star”

• Facts
• Dimensions
• Metrics
• Projections

De-normalized vs. normalized

De-normalized
(dimensions in fact table):
• Easy
• Simple queries
• No data changes are

possible
• Sub-efficient storage
• Sub-efficient queries

Normalized (dimensions in
separate tables):
• More difficult to

maintain
• More complex queries
• Dimensions can change
• More efficient storage
• More efficient queries

Normalized schema:
traditional approach - joins

• Limited support in ClickHouse (1 level, cascade sub-selects for

multiple)

• Dimension tables are not updatable

Dictionaries - ClickHouse dimensions
approach

• Lookup service: key -> value

• Supports multiple external sources (files,

databases etc.)

• Refreshable

Dictionaries. Example

SELECT country_name,
sum(imps)

FROM T
ANY INNER JOIN dim_geo USING (geo_key)

GROUP BY country_name;

vs

SELECT dictGetString(‘dim_geo’, ‘country_name’,
geo_key) country_name,

sum(imps)
FROM T

GROUP BY country_name;

Dictionaries. Configuration
<dictionary>

<name></name>

<source> … </source>

<lifetime> ... </lifetime>

<layout> … </layout>

<structure>

<id> ... </id>

<attribute> ... </attribute>

<attribute> ... </attribute>

...

</structure>

</dictionary>

Dictionaries. Sources
• file

• mysql table

• clickhouse table

• odbc data source

• executable script

• http service

Dictionaries. Layouts

• flat

• hashed

• cache

• complex_key_hashed

• range_hashed

Dictionaries. range_hashed

• ‘Effective Dated’ queries

<layout>

<range_hashed />

</layout>

<structure>

<id>

<name>id</name>

</id>

<range_min>

<name>start_date</name>

</range_min>

<range_max>

<name>end_date</name>

</range_max>

dictGetFloat32('srv_ad_serving_costs',
'ad_imps_cpm', toUInt64(0), event_day)

Dictionaries. Update values
• By timer (default)

• Automatic for MySQL MyISAM

• Using ‘invalidate_query’

• Manually touching config file

• N dict * M nodes = N * M DB connections

Dictionaries. Restrictions

• ‘Normal’ keys are only UInt64

• No on demand update (added in 1.1.54289)

• Every cluster node has its own copy

• XML config (DDL would be better)

Tables

• Engines

• Sharding

• Distribution

• Replication

Engine = ?
• In memory:

– Memory

– Buffer

– Join

– Set

• On disk:

– Log, TinyLog

– MergeTree

family

• Virtual:

• Merge

• Distributed

• Dictionary

• Null

• Special purpose:

• View

• Materialized
View

Merge tree
• What is ‘merge’

• PK sorting

• Date partitioning

• Query performance

Data Load

• Multiple formats are supported, including CSV, TSV,

JSONs, native binary

• Error handling

• Simple Transformations

• Load locally (better) or distributed (possible)

• Temp tables help

• Replicated tables help with de-dup

The power of Materialized Views

• MV is a table, i.e. engine, replication etc.

• Updated synchronously

• SummingMergeTree – consistent aggregation

• Alters are not straightforward, but possible

Data Load Diagram

Temp tables (local)

Fact tables (shard)

SummingMergeTree
(shard)

SummingMergeTree
(shard)

Log Files

INSERT

MV MV

INSERT Buffer tables
(local)

Realtime producers

INSERT

Buffer flush

MySQL

Dictionaries

CLICKHOUSE
NODE

Updates and deletes

• Dictionaries are updatable

• Replacing and Collapsing merge trees

–eventually updates

–SELECT … FINAL

• Partitions

Sharding and Replication
• Sharding and Distribution => Performance

– Fact tables and MVs – distributed over multiple shards

– Dimension tables and dicts – replicated at every node (local joins and

filters)

• Replication => Reliability

– 2-3 replicas per shard

– Cross DC

SQL
• Supports basic SQL syntax

• Non-standard JOINs implementation:

– 1 level only

– ANY vs ALL

– only USING

• Aliasing everywhere

• Array and nested data types, lambda-expressions, ARRAY JOIN

• GLOBAL IN, GLOBAL JOIN

• Approximate queries

• TopX support (LIMIT N BY)

Main Challenges Revisited

• Design efficient schema

– Use ClickHouse bests

– Workaround limitations

• Design sharding and replication

• Reliable data ingestion

• Client interfaces

Migration project timelines

• August 2016: POC

• October 2016: first test runs

• December 2016: production scale data load:

– 10-50B events/ day, 20TB data/day

– 12 x 2 servers with 12x4TB RAID10

• March 2017: Client API ready, starting migration

– 30+ client types, 20 req/s query load

• May 2017: extension to 20 x 3 servers

• June 2017: migration completed

ClickHouse at fall 2017

• 1+ year Open Source

• 100+ prod installs worldwide

• Public changelogs, roadmap, and plans

• 10+ devs, community contributors

• Active community, blogs, case studies

• A lot of features added by community requests

• Support by Altinity

So now it is much easier

ClickHouse and MySQL

• MySQL is widespread but weak for analytics

– TokuDB, InfiniDB somewhat help

• ClickHouse is best in analytics

How to combine?

Imagine

MySQL flexibility at ClickHouse speed?

Dreams….

ClickHouse with MySQL

• ProxySQL to access

ClickHouse data via MySQL

protocol (already available)

• Binlogs integration to load

MySQL data in ClickHouse in

realtime (in progress)

MySQL CH

ProxySQL

binlog consumer

ClickHouse instead of MySQL

• Web logs analytics

• Monitoring data collection and analysis

– Percona’s PMM

– Infinidat InfiniMetrics

• Other time series apps

Questions?

Contact me:

alexander.zaitsev@lifestreet.com
alz@altinity.com
skype: alex.zaitsev

