

Introduction to Presenter

www.altinity.com

Leading software and services
provider for ClickHouse

Major committer and community
sponsor in US and Western Europe

Robert Hodges - Altinity CEO

30+ years on DBMS plus
virtualization and security.

ClickHouse is DBMS #20

Goals of the talk
● Introduce scaling axes of ClickHouse clusters
● Dig into distributed clusters

○ Using shards to scale writes
○ Using replicas to scale reads

● Describe handy tricks as well as common performance bottlenecks

Non-Goals:

● Boost performance of single nodes (though that’s important, too)
● Teach advanced ClickHouse performance management

Introduction to ClickHouse

Understands SQL

Runs on bare metal to cloud

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

Is WAY fast!

 a b c d

 a b c d

 a b c d

 a b c d

ClickHouse Cluster Model

Clickhouse nodes can scale vertically

Storage

CPU

RAM

Host

Clickhouse nodes can scale vertically

Storage

CPU

RAM

Host

Clusters introduce horizontal scaling

Shards

Replicas

Host Host Host

Host

Replicas help with
concurrency

Shards add
IOPs

Different sharding and replication patterns

Shard 1

Shard 3

Shard 2

Shard 4

 All Sharded

Data sharded 4
ways without

replication

Replica 1

Replica 3

Replica 2

Replica 4

All Replicated

Data replicated 4
times without

sharding

Shard 1
Replica 1

Shard 1
Replica 2

Shard 2
Replica 1

Shard 2
Replica 2

Sharded and
Replicated

Data sharded 2
ways and

replicated 2 times

Clusters define sharding and replication layouts
/etc/clickhouse-server/config.d/remote_servers.xml:
<yandex>
 <remote_servers>
 <ShardedAndReplicated>
 <shard>
 <replica><host>10.0.0.71</host><port>9000</port></replica>
 <replica><host>10.0.0.72</host><port>9000</port></replica>
 <internal_replication>true</internal_replication>
 </shard>
 <shard>
 . . .
 </shard>
 </ShardedAndReplicated>
 </remote_servers>
</yandex>

How ClickHouse uses Zookeeper
INSERT

Replicate

 ClickHouse Node 1

Table: ontime
(Parts)

ReplicatedMergeTree

:9009

:9000 ClickHouse Node 2

Table: ontime
(Parts)

ReplicatedMergeTree

:9009

:9000

zookeeper-1

ZNodes

:2181 zookeeper-2

ZNodes

:2181 zookeeper-3

ZNodes

:2181

Cluster Performance in Practice

Setting up airline dataset on ClickHouse

clickhouse-0

ontime
_shard

airports

ontime

clickhouse-1

ontime
_shard

airports

ontime

clickhouse-2

ontime
_shard

airports

ontime

clickhouse-3

ontime
_shard

airports

ontime

Distributed
table

(No data)

Sharded,
replicated

table
(Partial data)

Fully
replicated

table
(All data)

Define sharded, replicated fact table
CREATE TABLE IF NOT EXISTS ̀ ontime_shard` ON CLUSTER '{cluster}' (
 `Year` UInt16,
 `Quarter` UInt8,
 ...
)
Engine=ReplicatedMergeTree(
'/clickhouse/{cluster}/tables/{shard}/airline_shards/ontime_shard',
'{replica}')
PARTITION BY toYYYYMM(FlightDate)
ORDER BY (FlightDate, `Year`, `Month`, DepDel15)

Trick: Use macros to enable consistent DDL
/etc/clickhouse-server/config.d/macros.xml:
<yandex>
 <macros>
 <all>0</all>
 <cluster>demo</cluster>
 <shard>0</shard>
 <replica>clickhouse-0</replica>
 </macros>
</yandex>

Define a distributed table to query shards
CREATE TABLE IF NOT EXISTS ontime ON CLUSTER `{cluster}`
AS airline_shards.ontime_shard
ENGINE = Distributed(
 '{cluster}', airline_shards, ontime_shard, rand())

Define a fully replicated dimension table
CREATE TABLE IF NOT EXISTS airports ON CLUSTER 'all-replicated' (
 AirportID String,
 Name String,
 ...
)
Engine=ReplicatedMergeTree(
 '/clickhouse/{cluster}/tables/{all}/airline_shards/airports',
'{replica}')
PARTITION BY tuple()
PRIMARY KEY AirportID
ORDER BY AirportID

Overview of insertion options
● Local versus vs distributed data insertion

○ Local – no need to sync, larger blocks, faster
○ Distributed – sharding by ClickHouse
○ CHProxy -- distributes transactions across nodes

● Asynchronous (default) vs synchronous insertions
○ insert_distributed_sync
○ insert_quorum, select_sequential_consistency – linearization at replica level

Distributed vs local inserts in action

ontime
_shardontime

Insert via
distributed

table
Insert directly

to shards

ontime
_shardontime

ontime
_shardontime

ontime
_shardontime

Data
Pipeline Data

Pipeline

Pipeline is shard-awareSlower and more
error prone

(Cache)

Distributed insert semantics

ontime
_shardontime

Insert via
distributed

table

ontime
_shardontime

ontime
_shardontime

Data
Pipeline (Queue)

insert_distributed_sync:

● 0 = Async propagation
● 1 = Sync propagation

ontime
_shardontime

Thread Pool

Testing cluster loading trade-offs

● With adequate I/O, RAM, CPU all
load options have equal
performance

● Direct loading is fastest for high
volume feeds

● Loading via distributed table is
most complex
○ Resource-inefficient
○ Can fail or lose data due to

async insertion
○ May generate more parts
○ Requires careful monitoring

CR
A

SH
!!

Selecting the sharding key

Shard 2 Shard 3Shard 1

Randomized Key, e.g.,
cityHash64(Url)

Must query
all shards

Nodes are
balanced

Shard 3

Specific Key e.g.,
cityHash64(TenantId)

Unbalanced
nodes

Queries can
skip shards

Shard 2Shard 1

Easier to
add nodes

Hard to
add nodes

Bi-level sharding combines both approaches

cityHash64(Url)

Shard 2 Shard 3Shard 1

TenantId

Shard 2Shard 1

cityHash64(Url) cityHash64(Url)

Shard 2Shard 1

Tenant-Group-1 Tenant-Group-2 Tenant-Group-3

Implement any sharding scheme via macros
/etc/clickhouse-server/config.d/macros.xml:
<yandex>
 <macros>
 <all>0</all>
 <cluster>demo</cluster>
 <group>2</group>
 <shard>0</shard>
 <replica>clickhouse-0</replica>
 </macros>
</yandex>

CREATE TABLE IF NOT EXISTS `ontime_shard` ON CLUSTER '{cluster}' (
. . .)
Engine=ReplicatedMergeTree(
'/clickhouse/{cluster}/tables/ {group}/{shard}/airline_shards/ontime_shard',
'{replica}')

Adding nodes and rebalancing data
● To add servers:

○ Configure and bring up ClickHouse
○ Add schema
○ Add server to cluster definitions in remote_servers.xml, propagate to other servers

● Random sharding schemes allow easier addition of shards
○ Common pattern for time series--allow data to rebalance naturally over time
○ Use replication to propagate dimension tables

● Keyed partitioning schemes do not rebalance automatically
○ You can move parts manually using ALTER TABLE FREEZE PARTITION/rsync/ALTER TABLE

ATTACH PARTITION
○ Other methods work too

How do distributed queries work?

ontime
_shardontime

Application

ontime
_shardontime

ontime
_shardontime

ontime
_shardontime

Application

Move WHERE and
heavy grouping work
to innermost level

Innermost
subselect is
distributed

AggregateState
computed

locally
Aggregates
merged on

initiator node

Read performance using distributed tables

● Best case performance is linear
with number of nodes

● For fast queries network latency
may dominate parallelization

ClickHouse pushes down JOINs by default
SELECT o.Dest d, a.Name n, count(*) c, avg(o.ArrDelayMinutes) ad
 FROM airline_shards_4.ontime o
 JOIN airline_shards_4.airports a ON (a.IATA = o.Dest)
 GROUP BY d, n HAVING c > 100000 ORDER BY d DESC
 LIMIT 10

SELECT Dest AS d, Name AS n, count() AS c, avg(ArrDelayMinutes) AS ad
 FROM airline_shards_4.ontime_shard AS o
 ALL INNER JOIN airline_shards_4.airports AS a ON a.IATA = o.Dest
 GROUP BY d, n HAVING c > 100000 ORDER BY d DESC LIMIT 10

...Unless the left side is a subquery
SELECT d, Name n, c AS flights, ad
FROM
(
 SELECT Dest d, count(*) c, avg(ArrDelayMinutes) ad
 FROM airline_shard_4.ontime
 GROUP BY d HAVING c > 100000
 ORDER BY ad DESC
)
LEFT JOIN airports ON airports.IATA = d
LIMIT 10

Remote
Servers

Distributed product modes affect joins
● ‘Normal’ IN/JOIN – run subquery locally on every server

○ Many nodes – many queries, expensive for distributed

● GLOBAL IN/JOIN - run subquery on initiator, and pass results to every server
● Distributed_product_mode alters “normal” IN/JOIN behavior :

○ deny (default)
○ allow – run queries in ‘normal’ mode, distributed subquery runs on every server, if GLOBAL

keyword is not used
○ local – use local tables for subqueries
○ global – automatically rewrite queries to ‘GLOBAL’ mode

Examples of IN operator processing

select foo from T1 where a in (select a from T2)

1) Subquery runs on a local table
 select foo from T1_local
 where a in (select a from T2_local)

2) Subquery runs on every node
 select foo from T1_local
 where a in (select a from T2)

3) Subquery runs on initiator node
create temporary table tmp Engine = Set AS select a from T2
select foo from T1_local where a in tmp;

Distributed query limitations and advice
● If joined table is missing, pushdown will fail
● Releases prior to 20.1 do not push down row-level security predicates
● Fully qualify table names to avoid syntax errors
● Distributed join behavior still somewhat limited

Settings to control distributed query

● distributed_product_mode -- How to handle joins of 2 distributed tables
● enable_optimize_predicate_expression -- Push down predicates
● max_replica_delay_for_distributed_queries -- Maximum permitted delay on

replicas
● load_balancing -- Load balancing algorithm to choose replicas
● prefer_localhost_replica -- Whether to try to use local replica first for queries
● optimize_skip_unused_shards -- One of several settings to avoid shards if

possible

(Plus others…)

Advanced Topics

Capacity planning for clusters
(Based on CloudFlare approach, see Resources slide below)

1. Test capacity on single nodes first
a. Understand contention between INSERTs, background merges, and SELECTs
b. Understand single node scaling issues (e.g., mark cache sizes)

2. If you can support your design ceiling with a single shard, stop here
a. Ensure you have HA covered, though

3. Build the cluster
4. Test full capacity on the cluster

a. Add shards to handle INSERTs
b. Add replicas to handle SELECTs

Debugging slow node problems
Distributed queries are only as fast as the slowest node

Use the remote() table function to test performance across the cluster. Example:

SELECT sum(Cancelled) AS cancelled_flights
FROM remote('clickhouse-0', airline_shards_4.ontime_shard)

SELECT sum(Cancelled) AS cancelled_flights
FROM remote('clickhouse-1', airline_shards_4.ontime_shard)

. . .

A non-exhaustive list of things that go wrong
Zookeeper becomes a bottleneck (avoid excessive numbers of parts)

Choosing a bad partition key

Degraded systems

Insufficient monitoring

Wrap-up and Further Resources

Key takeaways
● Shards add read/write capacity over a dataset (IOPs)
● Replicas enable more concurrent reads
● Choose sharding keys and clustering patterns with care
● Insert directly to shards for best performance
● Distributed query behavior is more complex than MergeTree
● It’s a big distributed system. Plan for things to go wrong

Well-managed clusters are extremely fast! Check your setup if you are not getting
good performance.

Resources
● Altinity Blog
● Secrets of ClickHouse Query Performance -- Altinity Webinar
● ClickHouse Capacity Planning for OLAP Workloads by Mik Kocikowski of

CloudFlare
● ClickHouse Telegram Channel
● ClickHouse Slack Channel

https://www.altinity.com/blog/
https://www.youtube.com/watch?v=6WICfakG84c
https://www.slideshare.net/Altinity/clickhouse-capacity-planning-for-olap-workloads-mik-kocikowski-of-cloudflare

Thank you!

Special Offer:
Contact us for a

1-hour consultation!

Contacts:
info@altinity.com

Visit us at:
https://www.altinity.com

Free Consultation:
https://blog.altinity.com/offer

mailto:info@altinity.com
https://www.altinity.com
https://blog.altinity.com/offer

