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Goals of the talk
● Understand single node MergeTree structure
● Improve response by tuning queries
● Get much bigger gains by changing data layout
● Increase storage performance with new multi-disk volumes

Non-Goals:

● Boost performance of sharded/replicated clusters
● Teach advanced ClickHouse performance management



ClickHouse & 
MergeTree Intro



Introduction to ClickHouse
Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

   a  b  c  d

   a  b  c  d

   a  b  c  d

   a  b  c  d

And it’s really fast!



Introducing the MergeTree table engine

CREATE TABLE ontime (
  Year UInt16,
  Quarter UInt8,
  Month UInt8,
  ...
) ENGINE = MergeTree() 
PARTITION BY toYYYYMM(FlightDate)
ORDER BY (Carrier, FlightDate)

Table engine type

How to break data 
into parts

How to index and 
sort data in each part



Basic MergeTree data layout

Table
Part

Index   Columns

Sparse Index

Columns 
sorted on 
ORDER BY 
columns

Rows match 
PARTITION BY 
expression

Part
Index   Columns

Part



MergeTree layout within a single part
/var/lib/clickhouse/data/airline/ontime_reordered

2017-01-01 AA
2017-01-01 EV
2018-01-01 UA
2018-01-02 AA
...

primary.idx

 |   |   |   |   

.mrk       .bin

20170701_20170731_355_355_2/
(FlightDate, Carrier...)     ActualElapsedTime  Airline    AirlineID...

 |   |   |   |   

.mrk       .bin
 |   |   |   |   

.mrk       .bin

Granule Compressed 
Block

 Mark



Basic Query 
Tuning 



ClickHouse performance tuning is different...

The bad news…

● No query optimizer
● No EXPLAIN PLAN
● May need to move [a lot 

of] data for performance

The good news…

● No query optimizer!
● System log is great
● System tables are too
● Performance drivers are 

simple: I/O and CPU
● Constantly improving



Your friend: the ClickHouse query log

clickhouse-client --send_logs_level=trace

select * from system.text_log

sudo less \
/var/log/clickhouse-server/clickhouse-server.log

Return messages to 
clickhouse-client

View all log 
messages on server

Must enable in 
config.xml



(Log messages)
Limit
 Expression
  MergeSorting
   PartialSorting

Expression
  ParallelAggregating
    Expression × 8
      MergeTreeThread

Use system log to find out query details
SELECT toYear(FlightDate) year,
  sum(Cancelled)/count(*) cancelled,
  sum(DepDel15)/count(*) delayed_15
FROM airline.ontime
GROUP BY year ORDER BY year LIMIT 10

8 parallel threads 
to read table

Query pipeline in log



Speed up query executing by adding threads
SELECT toYear(FlightDate) year,
  sum(Cancelled)/count(*) cancelled,
  sum(DepDel15)/count(*) delayed_15
FROM airline.ontime
GROUP BY year ORDER BY year LIMIT 10

SET max_threads = 2

SET max_threads = 4

. . . 

max_threads defaults to half the 
number of physical CPU cores



(Log messages)
Selected 355 parts by date, 
355 parts by key, 
21393 marks to read from 355 
ranges

Speed up queries by reducing reads
SELECT toYear(FlightDate) year,
  sum(Cancelled)/count(*) cancelled,
  sum(DepDel15)/count(*) delayed_15
FROM airline.ontime
GROUP BY year ORDER BY year LIMIT 10

(Log messages)
Selected 12 parts by date, 
12 parts by key, 
692 marks to read from 12 
ranges

SELECT toYear(FlightDate) year,
  sum(Cancelled)/count(*) cancelled,
  sum(DepDel15)/count(*) delayed_15
FROM airline.ontime
WHERE year = 
toYear(toDate('2016-01-01'))
GROUP BY year ORDER BY year LIMIT 10



(Log messages)
Selected 2 parts by date, 
2 parts by key, 
73 marks to read from 2 ranges

Query execution tends to scale with I/O
SELECT
  FlightDate,
  count(*) AS total_flights,
  sum(Cancelled) / count(*) AS cancelled,
  sum(DepDel15) / count(*) AS delayed_15
FROM airline.ontime
WHERE (FlightDate >= toDate('2016-01-01'))
  AND (FlightDate <= toDate('2016-02-10'))
GROUP BY FlightDate



(PREWHERE Log messages)
Elapsed: 0.591 sec. 
Processed 173.82 million rows, 
2.09 GB (294.34 million rows/s., 
3.53 GB/s.)

Use PREWHERE to help filter unindexed data
SELECT
  Year, count(*) AS total_flights,
  count(distinct Dest) as destinations,
  count(distinct Carrier) as carriers,
  sum(Cancelled) / count(*) AS cancelled,
  sum(DepDel15) / count(*) AS delayed_15
FROM airline.ontime [PRE]WHERE Dest = 'BLI' GROUP BY Year

(WHERE Log messages)
Elapsed: 0.816 sec. 
Processed 173.82 million rows, 
5.74 GB (213.03 million rows/s., 
7.03 GB/s.)



But PREWHERE can kick in automatically
SET optimize_move_to_prewhere = 1 

SELECT
  Year, count(*) AS total_flights,
  count(distinct Dest) as destinations,
  count(distinct Carrier) as carriers,
  sum(Cancelled) / count(*) AS cancelled,
  sum(DepDel15) / count(*) AS delayed_15
FROM airline.ontime 
WHERE Dest = 'BLI' GROUP BY Year (Log messages)

InterpreterSelectQuery: 
MergeTreeWhereOptimizer: condition 
"Dest = 'BLI'" moved to PREWHERE

This is the default value



Restructure joins to reduce data scanning
SELECT 
 Dest d, Name n, count(*) c, avg(ArrDelayMinutes)
  FROM ontime 
   JOIN airports ON (airports.IATA = ontime.Dest)
  GROUP BY d, n HAVING c > 100000 ORDER BY d DESC
     LIMIT 10

SELECT dest, Name n, c AS flights, ad FROM (
 SELECT Dest dest, count(*) c, avg(ArrDelayMinutes) ad
  FROM ontime
   GROUP BY dest HAVING c > 100000
     ORDER BY ad DESC
) LEFT JOIN airports ON airports.IATA = dest LIMIT 10

Faster

3.878 
seconds

1.177 
seconds



(Log messages)
ParallelAggregatingBlockInputStream
: Total aggregated. 173790727 rows 
(from 10199.035 MiB) in 3.844 sec. 
(45214666.568 rows/sec., 2653.455 
MiB/sec.)

The log tells the story

(Log messages)
ParallelAggregatingBlockInputStream
: Total aggregated. 173815409 rows 
(from 2652.213 MiB) in 1.142 sec. 
(152149486.717 rows/sec., 2321.617 
MiB/sec.)

Join during 
MergeTree scan

Join after 
MergeTree scan



More ways to find out about queries

SET log_queries = 1
Run a query
SELECT version()
SET log_queries = 0
SELECT * FROM system.query_log 
  WHERE query='SELECT version()'

SHOW PROCESSLIST

Start query logging

Stop query logging

Show currently 
executing queries



Optimizing Data 
Layout



Restructure data for big performance gains
● Ensure optimal number of parts
● Optimize primary key index and ordering to reduce data size and index 

selectivity
● Use skip indexes to avoid unnecessary I/O
● Use encodings to reduce data size before compression
● Use materialized views to transform data outside of source table
● Plus many other tricks



CREATE TABLE ontime ...
ENGINE=MergeTree()
PARTITION BY
  toYYYYMM(FlightDate)

CREATE TABLE ontime_many_parts
...
ENGINE=MergeTree()
PARTITION BY FlightDate

How do partition keys affect performance?

Is there a 
practical 
difference?



Keep parts in the hundreds, not thousands

Table Rows Parts
ontime 174M 355
ontime_many_parts (after 
OPTIMIZE)

174M 10,085

ontime_many_parts (before 
OPTIMIZE)

174M 14,635

CREATE TABLE ontime ...
ENGINE=MergeTree()
PARTITION BY
  toYYYYMM(FlightDate)

CREATE TABLE ontime_many_parts
...
ENGINE=MergeTree()
PARTITION BY FlightDate



Think about primary key index structure

CREATE TABLE ontime_reordered (
  Year UInt16,
  Quarter` UInt8,
  . . .)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(FlightDate)
ORDER BY (Carrier, Origin, FlightDate)
SETTINGS index_granularity=8192

Hashing large values 
allows index to fit in 
memory more easily

Large granularity 
makes index smaller

Small granularity can make 
skip indexes more selective



Table ORDER BY is key to performance

CREATE TABLE ontime_reordered (
  Year UInt16,
  Quarter` UInt8,
  . . .)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(FlightDate)
ORDER BY (Carrier, Origin, FlightDate)
SETTINGS index_granularity=8192

Choose order to make 
dependent non-key 
values less random

Benefits:
➔ Higher compression
➔ Better index selectivity
➔ Better PREWHERE 

performance



SET allow_experimental_data_skipping_indices=1; 

ALTER TABLE ontime ADD INDEX
  dest_name Dest TYPE ngrambf_v1(3, 512, 2, 0) GRANULARITY 1

ALTER TABLE ontime ADD INDEX
  cname Carrier TYPE set(0) GRANULARITY 1

OPTIMIZE TABLE ontime FINAL
-- OR, in current releases
ALTER TABLE ontime
  UPDATE Dest=Dest, Carrier=Carrier
    WHERE 1=1

Skip indexes cut down on I/O

Default value



Indexes & PREWHERE remove granules

(Log messages)
InterpreterSelectQuery: MergeTreeWhereOptimizer: 
condition "Dest = 'PPG'" moved to PREWHERE
. . .
(SelectExecutor): Index `dest_name` has dropped 55 
granules.
(SelectExecutor): Index `dest_name` has dropped 52 
granules.

Apply PREWHERE 
on Dest predicate

Use index to remove 
granules from scan



Effectiveness depends on data distribution
SELECT
  Year, count(*) AS flights,
  sum(Cancelled) / flights AS cancelled,
  sum(DepDel15) / flights AS delayed_15
FROM airline.ontime WHERE [Column] = [Value] GROUP BY Year

Column Value Index Count Rows Processed Query Response

Dest PPG ngrambf_v1 525 4.30M 0.053

Dest ATL ngrambf_v1 9,360,581 166.81M 0.622

Carrier ML set 70,622 3.39M 0.090

Carrier WN set 25,918,402 166.24M 0.566



Current index types

Name What it tracks

minmax High and low range of data; good for numbers with strong 
locality like timestamps

set Unique values

ngrambf_v1 Presence of character ngrams, works with =, LIKE, search 
predicates; good for long strings

tokenbf_v1 Like ngram but for whitespace-separated strings; good for 
searching on tags

bloomfilter Presence of value in column



Encodings improve compression efficiency

CREATE TABLE test_codecs ( a String,
a_lc LowCardinality(String) DEFAULT a,
b UInt32,
b_delta UInt32 DEFAULT b Codec(Delta),
b_delta_lz4 UInt32 DEFAULT b Codec(Delta, LZ4),

   b_dd UInt32 DEFAULT b Codec(DoubleDelta),
   b_dd_lz4 UInt32 DEFAULT b Codec(DoubleDelta, LZ4)
)
Engine = MergeTree 
PARTITION BY tuple() ORDER BY tuple();

Differences 
between 
values

Differences 
between change 
of value

Values with 
dictionary 
encoding



Effect on storage size is dramatic

-89%

-99.5%

-99.9%



Queries are faster due to less I/O
SELECT a AS a, count(*) AS c FROM test_codecs
GROUP BY a ORDER BY c ASC LIMIT 10
. . .
10 rows in set. Elapsed: 0.681 sec. Processed 100.00 million 
rows, 2.69 GB (146.81 million rows/s., 3.95 GB/s.)

SELECT a_lc AS a, count(*) AS c FROM test_codecs
GROUP BY a ORDER BY c ASC LIMIT 10
. . .
10 rows in set. Elapsed: 0.148 sec. Processed 100.00 million 
rows, 241.16 MB (675.55 million rows/s., 1.63 GB/s.)

Faster



Overview of encodings

Name Best for

LowCardinality Strings with fewer than 10K values

Delta Time series 

Double Delta Increasing counters

Gorilla Gauge data (bounces around mean)

T64 Integers other than random hashes

Compression may vary across ZSTD and LZ4 



TIP: use system.columns to check data size
SELECT table,
  formatReadableSize(sum(data_compressed_bytes)) tc,
  formatReadableSize(sum(data_uncompressed_bytes)) tu,
  sum(data_compressed_bytes) / sum(data_uncompressed_bytes) as ratio
FROM system.columns
WHERE database = currentDatabase()
GROUP BY table ORDER BY table



Use mat views to boost performance further

CREATE MATERIALIZED VIEW ontime_daily_cancelled_mv
ENGINE = SummingMergeTree
PARTITION BY tuple() ORDER BY (FlightDate, Carrier)
POPULATE
AS SELECT

FlightDate, Carrier, count(*) AS flights,
sum(Cancelled) / count(*) AS cancelled,
sum(DepDel15) / count(*) AS delayed_15

FROM ontime
GROUP BY FlightDate, Carrier

Returns cancelled/late 
flights where Carrier = 
‘WN’ in 0.007 seconds



More things to think about
Use smaller datatypes wherever possible

Use ZSTD compression (slower but better ratio) 

Use dictionaries instead of joins

Use sampling when approximate answers are acceptable

Shard/replicate data across a cluster for large datasets

Check out “Further Resources” 
slide for more information



Thinking about 
Storage and 
Memory



HDD HDD HDD HDD

ClickHouse now has flexible storage policies

ClickHouse

Default Disk Storage

HDD

ClickHouse

Volume Disk

JBOD Storage

New!

OS Page Cache OS Page Cache



How do you apply storage policies? 
CREATE TABLE.tripdata
(
  `pickup_date` Date DEFAULT toDate(tpep_pickup_datetime),
  ...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(pickup_date)
ORDER BY (pickup_location_id, dropoff_location_id, vendor_id)
SETTINGS storage_policy = 'ebs_jbod_4', 
         index_granularity = 8192

Policy



Effect of storage policies on response
-- Cold query
set min_bytes_to_use_direct_io=1
SELECT avg(passenger_count) 
FROM tripdata

-- Hot query
set min_bytes_to_use_direct_io=0
SELECT avg(passenger_count) 
FROM tripdata
. . . 
SELECT avg(passenger_count) 
FROM tripdata



TIP: system.parts tracks content across disks
SELECT
  database, table, disk_name,
  count(*) AS parts,
  uniq(partition) AS partitions,
  sum(marks) AS marks,
  sum(rows) AS rows,
  formatReadableSize(sum(data_compressed_bytes)) AS compressed,
  formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed,
  round(sum(data_compressed_bytes) / sum(data_uncompressed_bytes) * 100.0, 2) 
AS percentage
FROM system.parts
WHERE active and database = currentDatabase()
GROUP BY database, table, disk_name
ORDER BY database ASC, table ASC, disk_name ASC



Tiered storage is another new option

Time Series Data

95% of queries

Last day

Last month

Last year

4% of queries

1% of queries

High IOPS 

NVMe
SSD

HDD HDD HDD HDD

High Density 



And don’t forget all the great OS utilities!
● top and htop -- CPU and memory
● dstat -- I/O and network consumption
● iostat -- I/O by device
● iotop -- I/O by process
● iftop -- Network consumption by host
● perf top -- CPU utilization by system function

For a full description see Performance Analysis of ClickHouse Queries by Alexey 
Milovidov

https://yandex.github.io/clickhouse-presentations/meetup20/performance_analysis/index.html


Wrap-up



Takeaways on ClickHouse Performance
● ClickHouse performance drivers are CPU and I/O
● The system query log is key to understanding performance
● Query optimization can improve response substantially
● Restructure tables and add indexes/mat views for biggest 

gains
● In recent versions you can now optimize storage, too!



Further resources
● Altinity Blog, especially:

○ Amplifying ClickHouse Capacity with Multi-Volume Storage

● Altinity Webinars, especially:
○ ClickHouse Materialized Views:  The Magic Continues  
○ Strength in Numbers: Introduction to ClickHouse Cluster Performance

● ClickHouse documentation
● Performance Analysis of ClickHouse Queries by Alexey Milovidov
● ClickHouse Telegram Channel
● ClickHouse Slack Channel

https://www.altinity.com/blog/
https://www.altinity.com/blog/2019/11/27/amplifying-clickhouse-capacity-with-multi-volume-storage-part-1
https://www.altinity.com/webinarspage
https://www.altinity.com/webinarspage/2020/02/26/clickhouse-materialized-views-the-magic-continues
https://www.altinity.com/webinarspage/2020/04/29/strength-in-numbers-introduction-to-clickhouse-cluster-performance
https://clickhouse.tech/docs/en/
https://presentations.clickhouse.tech/meetup20/performance_analysis/index.html


Thank you!

Special Offer: 
Contact us for a 

1-hour consultation!

Contacts:
info@altinity.com

Visit us at:
https://www.altinity.com

Free Consultation:
https://blog.altinity.com/offer

mailto:info@altinity.com
https://www.altinity.com
https://blog.altinity.com/offer

