£\ Altinity WEBINAR

A PRACTICAL INTRODUCTION
TO HANDLING

- IN CLICKHOUSE

[N’
LOG

with Robert Hodges

© 2019, Altinity LTD

Introduction to Presenter

2% Altinity

Robert Hodges - Altinity CEO www.altinity.com
30+ years on DBMS plus Leading software and services
virtualization and security. provider for ClickHouse
ClickHouse is DBMS #20 Major committer and community

sponsor in US and Western Europe

£ Altinity

© 2019, Altinity LTD

Introduction to ClickHouse

Understands SQL And it's really fast!

Runs on bare metal to cloud = b e d | b e d |
| |

Shared nothing architecture : :
v v

Uses column storage

Parallel and vectorized execution S = b4
| |

Scales to many petabytes : :
v v

Is Open source (Apache 2.0)

£ Altinity

© 2019, Altinity LTD

Introduction to
log management

© 2019, Altinity LTD

Why is log management interesting?

e Logs are one of the biggest sources of data about operational systems
e Service-oriented architectures require ability to scan many logs, not just one
e Timely access to log data can improve service “ilities”

Expired

X509 Cert

HTTP 500 Erro Certificate
validation erro

© 2019, Altinity LTD

Log management architecture

Micro-service
Logs

|
Web Logs

|
DBMS Logs

Ingestion

Pipeline

5

=)

Event
Pipeline -

Interactive
Queries

Visualization

© 2019, Altinity LTD

Log management architecture

|| T T~

Micro-service
Logs

| I |
Web Logs 1 I
Interactive

/
4 I

| N
~ 7’ Visualization
DBMS Logs S ="

Focus for Today

© 2019, Altinity LTD

Data layout for web logs

Nginx access log in JSON format:

"time i1so08601": "2019-12-12T17:25:08-08:00",
"remote addr": "127.0.0.1",

"remote user": "",

"request": "GET /1 HTTP/1.1",

"status": "404",

"body bytes sent": "178",

"request time": "0.000",

"request length": "74",

"connection": "1",

"http referrer": "",

"http user agent": "curl/7.58.0"

© 2019, Altinity LTD

How to model log data in ClickHouse

JSON
Blob

Array of Keys
Array of Values

JSON: Header Tabular: every Arrays: Header
values with JSON value is a scalar values with
string (“blob”) column key-value pairs

Managing logs
as JSON blobs

© 2019, Altinity LTD

Simplest table design stores JSON as text

CREATE TABLE log_row
(
“file_date™ Date,
“file_timestamp™ DateTime,
“file_name" String,
‘row” String
)
ENGINE = MergeTree
PARTITION BY file_date
ORDER BY file_name
SETTINGS index_granularity = 512

© 2019, Altinity LTD

Write a Python script to create CSV rows

#!/usr/bin/env python3
import sys, os.path, datetime

FILE = sys.argv[1l]
with open (FILE) as f:
for line in f:
dt = datetime.datetime.fromtimestamp (os.path.getctime (FILE))
print ("'{0}", "{1}', '{2}', '"{3}'".format (

dt.date () .isoformat (),
dt.isoformat (timespec="'seconds'),
FILE,

line

))

© 2019, Altinity LTD

Now load the log files

query="INSERT INTO logs.log row FORMAT CSV"

for log file in /var/log/nginx/access.log*
do
./ingest-file.py S$log file | \
clickhouse-client --query="Squery"
done

© 2019, Altinity LTD

How big is the data??

SELECT

table, name,

sum (data compressed bytes) AS compressed,

sum (data uncompressed bytes) AS uncompressed,

floor ((compressed / uncompressed) * 100, 4) AS percent
FROM system.columns WHERE database = currentDatabase ()
GROUP BY table, name
ORDER BY table ASC, name ASC

—table——- —name —compressed——uncompressed——percent—
log row file date 83 2576 3.222
log row file name 257 33662 0.7634
log row file timestamp 97 5152 1.8827
log row row 3485 353410 0.9861

© 2019, Altinity LTD

Use JSON* functions to get JSON

-—- Get a JSON value
SELECT JSONExtractString(row, 'status')
FROM log row LIMIT 3

-—- Get 1t with proper type.
SELECT toIntl6 (JSONExtractString(row, 'status')) AS status
FROM log row LIMIT 3

—-— Use the wvalue to select rows
SELECT

*
4

toIntle6 (JSONExtractString(row, 'status')) AS status
FROM log row WHERE status >= 400 LIMIT 3

© 2019, Altinity LTD

JSON* vs visitParam functions

—-— Get using JSON function
SELECT JSONExtractString(row, 'status') E—
FROM log row LIMIT 3

-—- Get 1t with proper type.
SELECT visitParamExtractString(row, 'status')
FROM log row LIMIT 3

Moving from
JSON to tabular
schema

© 2019, Altinity LTD

Tabular form is easy for queries

SELECT remote addr, status, count() FROM
(

9

)
GROUP BY remote addr, status

ORDER BY remote addr, status

© 2019, Altinity LTD

...But converting from JSON is awkward

SELECT remote_ addr, status, count() FROM (
SELECT
parseDateTimeBestEffort (JSONExtractString (row, 'time i1s08601'))
AS time iso8601,
JSONExtractString (row, 'remote addr') AS remote addr,
JSONExtractString (row, 'remote user') AS remote user,
JSONExtractString(row, 'request') AS request,

toIntl6 (JSONExtractString(row, 'status')) AS status,

toInt32 (JSONExtractString (row, 'body bytes sent')) AS body bytes sent,
toFloat32 (JSONExtractString (row, 'request time')) AS request time,
toInt32 (JSONExtractString (row, 'request length')) AS request length,
toInt32 (JSONExtractString (row, 'connection')) AS connection,
JSONExtractString (row, 'referrer') AS referrer,

JSONExtractString (row, 'http user agent') AS http user agent
FROM log row

)
GROUP BY remote_ addr, status ORDER BY remote addr, status

© 2019, Altinity LTD

Materialized columns make life easier!

ALTER TABLE log row
ADD COLUMN
status Intl6 Oy NgR] <«
toIntl6 (JSONExtractString(row, 'status'))
ALTER TABLE log row
UPDATE status = status WHERE 1 =1

ALTER TABLE log row
ADD COLUMN

status Intl6 ULVYNIEN:NHEAND)
toIntl6 (JSONExtractString(row, 'status'))
OPTIMIZE TABLE log_row FINAL

*Expensive

© 2019, Altinity LTD

Checking the size of materialized columns

SELECT table, name,
sum(data_compressed bytes) compressed,
sum(data_ uncompressed bytes) uncompressed,
floor (compressed/uncompressed*100, 4)

as percent

FROM system.columns

WHERE database = currentDatabase ()

GROUP BY table, name ORDER BY table, name

—table r—hame r—compressed——uncompressed——percent—
log row	file date	83	2576	3.222
log row	file name	257	33662	0.7634
log row	file timestamp	97	5152	1.8827
log_row	row	3485	353410	0.9861
log row	status	95	2576	3.6878

© 2019, Altinity LTD

Using mat views
for log ingestion

Introducing ETL pipelines for logs

© 2019, Altinity LTD

Enrich data with
materialized view

INSERT

|
Nginx Logs

INTO
—

log_row_etl

0.

log_row_nginx

Create the base ETL table

© 2019, Altinity LTD

CREATE TABLE log row etl (
file date Date,
file timestamp DateTime,
file name String,
row String

) ENGINE = Null *+

© 2019, Altinity LTD

Create the target table for NGINX logs

CREATE TABLE log row nginx (
file date Date, file timestamp DateTime,
file name String, time iso8601 Datetime,
remote addr IPv4, remote user String,
request String, status Intle,
body bytes sent Int32, request time Float32,
request length Int32, connection Int32,
referrer String, http user agent String

)

ENGINE = MergeTree

PARTITION BY

ORDER BY (file name, time_iso8601{‘/,/”//

SETTINGS index granularity = 8196

© 2019, Altinity LTD

Create materialized view for ETL

CREATE MATERIALIZED VIEW log row _etl mv _nginx TO log row _nginx AS

SELECT
file date, file timestamp, file name,
parseDateTimeBestEffort (JSONExtractString(row, 'time iso8601'))
AS time iso8601,
cast (IPv4StringToNum (JSONExtractString(row, 'remote addr')) AS IPv4)
AS remote_ addr,
JSONExtractString(row, 'remote user') AS remote user,
JSONExtractString(row, 'request') AS request,
toIntl6 (JSONExtractString(row, 'status')) AS status,
toInt32 (JSONExtractString(row, 'body bytes sent')) AS body bytes sent,
toFloat32 (JSONExtractString (row, 'request time')) AS request time,
toInt32 (JSONExtractString (row, 'request length')) AS request length,
toInt32 (JSONExtractString(row, 'connection')) AS connection,
JSONExtractString(row, 'referrer') AS referrer,
JSONExtractString(row, 'http user agent') AS http user agent

FROM log row _etl

© 2019, Altinity LTD

Reload the load files

query="INSERT INTO logs.log row etl FORMAT CSV"

for log file in /var/log/nginx/access.log*
do
./ingest-file.py S$log file | \
clickhouse-client --query="Squery"
done

© 2019, Altinity LTD

Now we can query normally

SELECT
remote addr,
status,
count (*)
FROM log row nginx
GROUP BY remote addr, status
ORDER BY remote addr, status

—remote addr——status——count()—
| 127.0.0.1 | 200 | 857

|
| 127.0.0.1 | 404 | 431 |
| | | |

© 2019, Altinity LTD

Extending for different log types

l INSERT
MySQL Logs INTO
|
Nginx Logs INSERT
INTO

log_row_mysql

log_row_etl

log_row_nginx

© 2019, Altinity LTD

Implement branching with WHERE clauses

CREATE MATERIALIZED VIEW log row _etl mv _nginx TO log row _nginx AS

SELECT
file date, file timestamp, file name,
parseDateTimeBestEffort (JSONExtractString(row, 'time iso8601'))
AS time iso8601,
cast (IPv4StringToNum (JSONExtractString(row, 'remote addr')) AS IPv4)

AS remote_ addr,

1300 G JE Y IAMWHERE file name like '/var/log/nginx$'

© 2019, Altinity LTD

© 2019, Altinity LTD

Storing logs in ClickHouse: summary

Store data as JSON blobs

Fetch out values using JSON* or visitParam* functions

Use materialized columns to turn JSON incrementally into table columns
Use Null table engine and materialized views to convert logs to tables

© 2019, Altinity LTD

This is just the beginning

We plan future webinars to explore additional topics related to log management

Tools for log ingest
Query and visualization of log contents
Generating alerts on log events

{
{
{
e Performance tricks for log data

© 2019, Altinity LTD

Thank YOU! Presenter:

rhodges@altinity.com

Visit us at:

S eCiaI Offer: hitps://www.altinity.com

Contact us for a

. Free Consultation:
1-hour consultation! [l e

£ Altinity

mailto:rhodges@altinity.com
https://www.altinity.com
https://blog.altinity.com/offer

