Altinity
A Fast Intro to Fast

’ 1 Altini Ly Dioew

Altinity Background

Premier provider of software and services for ClickHouse
Incorporated in UK with distributed team in US/Canada/Europe
Main US/Europe sponsor of ClickHouse community

Offerings:

o Enterprise support for ClickHouse and ecosystem projects
o Software (Kubernetes, cluster manager, tools & utilities)

o POCs/Training

The shape of data has
changed

Business insights are
hidden in massive pools
of automatically
collected information

Crunch time in France
The Ten years on: banking after the crisis
| LY 0 LO D0 NEI M south Koreas nfinished revolution
Biology, but without the cells

The world's most
valuable resource

Data and the new rules
of competition

Applications that rule the digital era have a

common success factor

The ability to discover and apply
business-critical insights
from petabyte datasets in real time

Let's consider a concrete example

Web properties track clickstreams to:

e (Calculate clickthrough/buy rates
e Guide ad placement
e Optimize eCommerce services

Constraints:

Run on commodity hardware
Simple to operate

Fast interactive query

Avoid encumbering licenses

Existing analytic databases do not meet requirements fully

% snowflake

@

HtInfluxDB

1 -
amazon citusdata |
. REDSHIFT. m % cloudera ‘ - elasticsearch
Google igQuery SOL Server databricks | &) TIMESCALE
Cloud-native data Legacy SQL databases Hadoop/Spark Specialized solutions

warehouses cannot
operate on-prem,
limiting range of
solutions

are expensive to run,
scale poorly on

commodity hardware,
and adapt slowly

ecosystem solutions
are resource
intensive with slow
response and
complex pipelines

limit query domain
and are complex/
resource-inefficient
for general use

ClickHouse fills the gaps and does much more besides

Understands SQL

Ida b ¢ d Ida b ¢ d

Runs on bare metal to cloud

Stores data in columns

Parallel and vectorized execution

Ida b ¢ d Ida b ¢ d

Scales to many petabytes

Is Open source (Apache 2.0)

Is WAY fast!

What does “WAY fast” mean?

SELECT Dest d, count(*) c, avg(ArrDelayMinutes) ad
FROM ontime GROUP BY d HAVING c¢ > 100000
ORDER BY ad DESC limit 5

|—d | C— ad—|
EWR 3660570 17.637564095209218
SFO 40560003 16.029478528492213
JFK 2198078 15.33669824273752
LGA 3133582 14.533851994299177
ORD 9108159 14.431460737565077

5 rows in set. Elapsed: 1.182 sec. Processed 173.82 million
rows, 2.78 GB (147.02 million rows/s., 2.35 GB/s.)

(Amazon md5.2xlarge: Xeon(R) Platinum 8175M, 8vCPU, 30GB RAM, NVMe SSD)

What are the main ClickHouse use patterns?

e Fast, scalable data warehouse for online services (SaaS
and in-house apps)

e Built-in data warehouse for installed analytic applications

e Exploration -- throw in a bunch of data and go crazy!

Getting started is easy with Docker image

$ docker run -d --name ch-s yandex/clickhouse-server
$ docker exec -it ch-s clickhouse client

11e99303c78e :) select wversion()
SELECT version()

—version () —

| 19.3.3 |
| |

1 rows in set. Elapsed: 0.001 sec.

Or install recommended Altinity stable version packages

$ sudo apt -y install clickhouse-client=18.16.1 \
clickhouse-server=18.16.1 \
clickhouse-common-static=18.16.1

$ sudo systemctl start clickhouse-server

11e99303c78e :) select wversion()
SELECT version|()

—version () —

| 18.16.1 |
| |

1 rows in set. Elapsed: 0.001 sec.

Examples of table creation and data insertion

CREATE TABLE sdata (

DevId Int32,

Type String,

MDate Date,

MDatetime DateTime,

Value Floaté4
) ENGINE = MergeTree () PARTITION BY toYYYYMM (MDate)
ORDER BY (DevId, MDatetime)

INSERT INTO sdata VALUES
(15, 'TEMP', '2018-01-01', '2018-01-01 23:29:55', 18.0),
(15, 'TEMP', '2018-01-01', '2018-01-01 23:30:56', 18.7)

INSERT INTO sdata VALUES
(15, 'TEMP', '2018-01-01', '2018-01-01 23:31:53', 18.1),
(2, 'TEMP', '2018-01-01', '2018-01-01 23:31:55', 7.9)

Loading data from CSV files

cat > sdata.csv <<END

DevlId, Type,MDate MDatetime,Value
59, "TEMP" ,"2018-02-01","2018-02-01
59, "TEMP","2018-02-01","2018-02-01
59, "TEMP","2018-02-01","2018-02-01
59, "TEMP","2018-02-01","2018-02-01
59, "TEMP" ,"2018-02-01","2018-02-01
59, "TEMP","2018-02-01","2018-02-01
59, "TEMP","2018-02-01","2018-02-01
END

01l:
02:
03:
04:
05:
06:
07:

10:
10:
09:
10:
10:
10:
09:

13",109.
o1",18.
58",18.
o5",15.
31",12.
o2",11.
55",10.

©O© 00oNFKF Oo0WWU

cat sdata.csv |clickhouse-client --database foo
--query="'"INSERT INTO sdata FORMAT CSVWithNames'

Select results can be surprising!
SELECT * Result right after INSERT:

FROM sdata —DevId——Type—T—MDate MDatetime——Value—
WHERE | 15 | TEMP | 2018-01-01 | 2018-01-01 23:29:55 | 18 |

DevId < 20 | 15 | TEMP | 2018-01-01 | 2018-01-01 23:30:56 | 18.7 |
I | l | |

—DevId——Type—T—MDate MDatetime——Value—
| 2 | TEMP | 2018-01-01 2018-01-01 23:31:55 | 7.9 |
| 15 | TEMP | 2018-01-01 2018-01-01 23:31:53 | 18.1 |

Result somewhat later:

MDatetime——Value—
| 2018-01-01 2018-01-01 23:31:55 |
| 2018-01-01 2018-01-01 23:29:55 |
| 2018-01-01 2018-01-01 23:30:56 |
| 2018-01-01 2018-01-01 23:31:53 |
| |

Time for some research into table engines

CREATE TABLE sdata (

DevId Int32, How to manage data

lype string, and handle queries
MDate Date,

MDatetime DateTime,

How to break table

Value Floato4 .
) ENGINE = MergeTree () / Into parts
PARTITION BY toYYYYMM(MDate)

ORDER BY (DevId, MDatetime) - |

How to index and
sort data in each part

MergeTree writes parts quickly and merges them offline

/var/lib/clickhouse/data/default/sdata

\
/'

201801_1_1_0/

201801_1_2_1/

201801_2_2_0/

Single part after merge
(=> very fast reads)

Multiple parts after initial
insertion (=> very fast writes)

Rows are indexed and sorted inside each part

/var/lib/clickhouse/data/default/sdata
201801_1_2_1/

(Devid, MDateTime) Devid Type MDate MDatetime...
primary.idx .mrk .bin .mrk .bin .mrk .bin .mrk .bin

v .

956 [2018-01-01 15:22:37 o — | I

575 [2018-01-01 23:31:53

1300 [2018-01-02 05:14:47 ‘o T [i

201802_1_1_0/
(Devid, MDateTime) Devid Type MDate MDatetime...

primary.idx .mrk .bin .mrk .bin .mrk .bin .mrk .bin

Now we can follow how query works on a single server

ClickHouse

SELECT DevIid, Type, avg(Value)
FROM sdata
WHERE MDate = '2018-01-01"
GROUP BY DevId, Type

|[dentify parts to search

Query in parallel

Result Set

Aggregate results

.

Clickhouse distributed engine spreads queries across shards

ClickHouse
sdata_dist sdata
(Distributed) f (MergeTable)
SELECT ... /
FROM ClickHouse
sdata_dist L >
< | sdata_dist sdata
Result Set ‘ !
. ClickHouse \

sdata_dist sdata

ReplicatedMergeTree engine spreads over shards and replicas

e —— ClickHouse ClickHouse
eplicatedMergeTree . , ,
Engine sdata_dist sdata_dist
SELECT ...
bR O sdata_dist sdata_dist
< |I sdata sdata Zookeeper
Result Set | |
. ClickHouse ClickHouse
sdata_dist sdata_dist
sdata sdata

With basic engine knowledge you can now tune queries

SELECT Dest, count (*) ¢, avg(DepDelayMinutes)
FROM ontime
GROUP BY Dest HAVING c > 100000
ORDER BY ¢ DESC limit 5

SELECT Dest, count (*) ¢, avg(DepDelayMinutes)
FROM ontime
WHERE toYear (FlightDate) =
toYear (toDate ('2016-01-01"))
GROUP BY Dest HAVING c > 100000
ORDER BY ¢ DESC 1limit 5

Hint: clickhouse-server.log has the query plan

Scans 355 table parts
in parallel; does not
use index

Scans 12 parts (3%
of data) because
FlightDate is
partition key

You can also optimize joins

SELECT

Dest d, Name n, count(*) c, avg(ArrDelayMinutes)

FROM ontime
JOIN ailrports ON (airports.IATA =

ontime.Dest)
GROUP BY d, n HAVING c > 100000 ORDER BY ad DESC

SELECT dest, Name n, c AS flights, ad FROM (

)

SELECT Dest dest, count(*) c, avg(ArrDelayMinutes)

FROM ontime

GROUP BY dest HAVING c > 100000
ORDER BY ad DESC

LEFT JOIN airports ON airports.IATA

dest

ad

Joins on data
before GROUP BY,
increased amount
to scan

Subquery
minimizes data
scanned in
parallel; joins on
GROUP BY results

ClickHouse has a wealth of features to help queries go fast

Dictionaries
Materialized Views
Arrays

Specialized functions and SQL
extensions

Lots more table engines

...And a nice set of supporting ecosystem tools

Client libraries: JDBC, ODBC, Python, Golang, ...

Kafka table engine to ingest from Kafka queues
Visualization tools: Grafana, Tableau, Tabix, SuperSet

Data science stack integration: Pandas, Jupyter Notebooks

Kubernetes ClickHouse operator

Where to get more information

e ClickHouse Docs: https://clickhouse.yandex/docs/en/

e Altinity Blog: https:/www.altinity.com/blog

e Meetups and conference presentations
o 2 April -- Madrid, Spain ClickHouse Meetup
o 28-30 May - Austin, TX Percona Live 2019
o San Francisco ClickHouse Meetup

https://clickhouse.yandex/docs/en/
https://www.altinity.com/blog

Contacts:

Questions?

Visit us at:

Thank yOU! Read Our Blog:

mailto:info@altinity.com
https://www.altinity.com
https://www.altinity.com/blog

What if you have a lot of data?

CREATE TABLE

Copy this
schema

Distribute data
on this value

|

sense.sdata dist AS sense.sdata !
ENGINE = Distributed (scluster, sense, sdata, DevId)

/

N,

Engine for distributed
tables

Cluster, database,
and table names

What's a Cluster? (Hint: it’s a file.)

<yandex>
<remote_servers>
<scluster>
<shard>
<internal replication>true</internal replication>
<replica>
<host>ch-d7dc980i1-0.d7dc980ils</host>
<port>9000</port>
</replica>
</shard>
<shard>
<internal replication>true</internal replication>
<replica>
<host>ch-d7dc980i2-0.d7dc980i2s</host>
<port>9000</port>
</replica>
</shard>
</scluster>
</remote_servers>
</yandex>

Distributed engine spreads queries across shards

ClickHouse
sdata_dist sdata
(Distributed) f (MergeTable)
SELECT ... /
FROM ClickHouse
sdata_dist L >
< | sdata_dist sdata
Result Set ‘ !
. ClickHouse \

sdata_dist sdata

What if you have a lot of data and you don't want to lose it?

CREATE TABLE sense.sdata (
DevId Int32, Type String,
MDate Date,

MDatetime DateTime,
Value Floato64
) engine=ReplicatedMergeTree (

'/clickhouse/{installation}/{scluster}/tables/{scluster-

shard}/sense/sdata’,

Engine for replicated
tables

Cluster identification

///////////

'{replica}', MDate, (Devid, MDatetime), 8192);

X \\\\\\\\\\\\L///////////”

‘ Replica # ‘ ‘ MergeTree parameters ‘

Now we distribute across shards and replicas

ClickHouse

sdata_dist

sdata

Zookeeper

ClickHouse

sdata_dist

Zookeeper

sdata

Zookeeper

ool M . ClickHouse
ep Icate ergelree . i
Engine sdata_dist
'S sdata
SELECT ...
FROM | ClickHouse
sdata_dist sdata_dist
< |I sdata
Result Set
L ClickHouse
sdata_dist

sdata

ClickHouse

sdata_dist

sdata

With basic engine knowledge you can now tune queries

SELECT Dest, count (*) ¢, avg(DepDelayMinutes)
FROM ontime
GROUP BY Dest HAVING c > 100000
ORDER BY ¢ DESC limit 5

SELECT Dest, count (*) ¢, avg(DepDelayMinutes)
FROM ontime
WHERE toYear (FlightDate) =
toYear (toDate ('2016-01-01"))
GROUP BY Dest HAVING c > 100000
ORDER BY ¢ DESC 1limit 5

Hint: clickhouse-server.log has the query plan

Scans 355 table parts
in parallel; does not
use index

Scans 12 parts (3%
of data) because
FlightDate is
partition key

