
ClickHouse on Kubernetes!
Intro to the Kubernetes ClickHouse Operator

Altinity Engineering Team

Altinity Background

● Premier provider of software and services for ClickHouse
● Incorporated in UK with distributed team in US/Canada/Europe
● Main US/Europe sponsor of ClickHouse community
● Offerings:

○ 24x7 support for ClickHouse deployments
○ Software (Kubernetes, cluster manager, tools & utilities)
○ POCs/Training

What is ClickHouse?

Understands SQL

Runs on bare metal to cloud

Simple to install

Stores data in columns

Scales to many petabytes

Is Open source (Apache 2.0)

Is WAY fast!

Id a b c d

Id a b c d

Id a b c d

Id a b c d

What is Kubernetes?

“Kubernetes is the new Linux”

Actually it’s an open-source platform to:
● manage container-based systems
● build distributed applications declaratively
● allocate machine resources efficiently
● automate application deployment

Why run ClickHouse on Kubernetes?

1. Other applications are already there
2. Portability
3. Bring up data warehouses quickly
4. Easier to manage than deployment on hosts

What does ClickHouse look like on Kubernetes?

Shard 1 Replica 1

Zookeeper
Services

Zookeeper-0

Zookeeper-2

Zookeeper-1
Replica
Service

Load
Balancer
Service

Shard 1 Replica 2

Shard 2 Replica 1

Shard 2 Replica 2

Replica
Service

Replica
Service

Replica
Service

User Config Map Common Config Map

Stateful
Set Pod

Persistent
Volume
Claim

Persistent
Volume

Per-replica Config Map

kube-system namespace

The ClickHouse operator turns complex data warehouse
configuration into a single easy-to-manage resource

ClickHouse
Operator

ClickHouseInstallation
YAML file

your-favorite namespace

ClickHouse
cluster

resources

(Apache 2.0 source,
distributed as Docker

image)

Installing and removing the ClickHouse operator

[Optional] Get sample files from github repo:

git clone https://github.com/Altinity/clickhouse-operator

Install the operator:

kubectl apply -f clickhouse-operator-install.yaml

Remove the operator:

kubectl delete -f clickhouse-operator-install.yaml

Let’s start with a single-node cluster

apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "demo-01"
spec:
 configuration:

clusters:
 - name: "demo-01"
 layout:
 type: Standard
 shardsCount: 1
 replicasCount: 1

WARNING: This installation lacks
persistent storage

See examples in later slides for
storage definition

Next let’s add a shard

apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "demo-01"
spec:
 configuration:

clusters:
 - name: "demo-01"
 layout:
 type: Standard
 shardsCount: 2
 replicasCount: 1

How to access your ClickHouse data warehouse on
Kubernetes

Connect from within Kubernetes using service DNS name

Use load balancer
clickhouse-client --host clickhouse-demo-01.test
Connect to specific node
clickhouse-client --host chi-a82946-2946-0-0.test

Connect from outside Kubernetes using Ingress or Nodeport

Kops deployment on AWS configures external ingress.
clickhouse-client --host $AWS_ELB_HOST_NAME

Replication requires Zookeeper to be enabled

Install minimal Zookeeper in separate namespace.

kubectl create ns zoons
kubectl apply -f zookeeper-1-node.yaml -n zoons
watch kubectl -n zoons get all

Note ZK node DNS name: zookeeper-0.zookeepers.zoons

You can also install using helm *or* use external ZK cluster

After inserting a ‘zookeepers’ clause we can add replicas

apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "demo-01"
spec:
 configuration:

zookeeper:
 nodes:
 - host: zookeeper-0.zookeepers.zoons
 port: 2181

clusters:
 - name: "demo-01"
 layout:
 type: Standard
 shardsCount: 2
 replicasCount: 2

NOTE: Non-replicated tables do not
replicate automatically when replicas
are added

TIP: Confirm the DNS name of
Zookeeper from with a pod

We can add and modify users with the ‘users’ clause
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "demo-01"
spec:
 configuration:
 users:
 demo/default: secret
 demo/password: demo
 demo/profile: default
 demo/quota: default
 demo/networks/ip: "::/0"
 clusters:
 - name: "demo-01"
 layout:
 type: Standard
 shardsCount: 2
 replicasCount: 1

TIP: User and profile changes take a
few minutes to propagate. Confirm
changes using clickhouse-client

To make storage persistent and set properties add an
explicit volume claim template with class and size

apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "storage"
spec:
 defaults:
 deployment:
 volumeClaimTemplate: storage-vc-template
 templates:

volumeClaimTemplates:
- name: storage-vc-template

 persistentVolumeClaim:
 metadata:
 name: USE_DEFAULT_NAME
 spec:
 storageClassName: default
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 configuration:

TIP: Check syntax carefully as
errors may result in failures to
allocate or mount volumes

TIP: Confirm storage by
‘kubectl exec’ into pod; run ‘df
-h’ to confirm mount

storageClassName can be used to set the proper class of
storage as well as disable dynamic provisioning

Use kubectl to find available storage classes:
 kubectl describe StorageClass

Bind to default storage:
 spec:
 storageClassName: default

Bind to gp2 type
 spec:
 storageClassName: gp2

Disable dynamic provisioning and use static PVs:
 spec:
 storageClassName: ‘’

Set the ClickHouse version using a podTemplate
apiVersion: "clickhouse.altinity.com/v1"
kind: "ClickHouseInstallation"
metadata:
 name: "demo-02"
spec:
 defaults:
 deployment:
 podTemplate: clickhouse-stable
 volumeClaimTemplate: storage-vc-template
 templates:
 podTemplates:
 - name: clickhouse-stable
 containers:
 - name: clickhouse
 image: yandex/clickhouse-server:18.16.1

volumeClaimTemplates:
Etc.

TIP: Always specify the
image version fully; do not
use ‘latest’ tag

More pod template tricks: controlling resources
spec:
 defaults:
 deployment:
 podTemplate: clickhouse-stable
 volumeClaimTemplate: storage-vc-template
 templates:
 podTemplates:
 - name: clickhouse-stable
 containers:
 - name: clickhouse
 image: yandex/clickhouse-server:18.16.1
 resources:
 requests:
 memory: "512Mi"
 cpu: "500m"
 limits:
 memory: "512Mi"
 cpu: "500m"
Etc.

Advice, encouragement, and caveats

● Clickhouse operator is in beta
● Operator does not always detect errors in manifest files
● Error logging is limited, will be improved shortly
● Connectivity is a work in progress
● It’s a great way to explore cluster configurations

Please explore the operator and log issues on Github!!!

Partial roadmap for the operator and other Altinity projects

● Make operator status more transparent
● Default configuration templates
● ClickHouse health checks
● Predefined Grafana monitoring dashboards

Coming soon:

● Altinity Cluster Manager
● Storage management starting with backup/restore

More information on Altinity ClickHouse Operator...

ClickHouse Operator Github Project:
https://github.com/Altinity/clickhouse-operator

Altinity Blog -- https://www.altinity.com/blog

Webinars like this one!

https://github.com/Altinity/clickhouse-operator
https://www.altinity.com/blog

Questions?

Thank you!

Contacts:
info@altinity.com

Visit us at:
https://www.altinity.com

Read Our Blog:
https://www.altinity.com/blog

mailto:info@altinity.com
https://www.altinity.com
https://www.altinity.com/blog

