
© 2024 Altinity, Inc. ((c) 2024 Altinity Inc.

ClickHouse Performance Master Class

Tools and techniques to speed up any ClickHouse app

Presenters:
Alexander Zaitsev and Mikhail Filimonov

1

April 23 @ 8:00 am PDT

© 2024 Altinity, Inc.

Let’s make some introductions

ClickHouse support and services including Altinity.Cloud
Authors of Altinity Kubernetes Operator for ClickHouse

and other open source projects

Us
Database geeks with centuries

of experience in DBMS and
applications

You
Applications developers

looking to learn about
ClickHouse

2

https://altinity.com/cloud-database/
https://github.com/Altinity/clickhouse-operator

© 2024 Altinity, Inc.

What’s a
ClickHouse?

3

© 2024 Altinity, Inc.

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is a SQL Data Warehouse

4

 a b c d

 a b c d

 a b c d

 a b c d

And it’s really fast!

© 2024 Altinity, Inc.

Performance in
ClickHouse

5

© 2024 Altinity, Inc.

ClickHouse is Very Fast

6

.. but sometimes it may go slow

© 2024 Altinity, Inc.

What does “slow” mean may be different

Execution time of a single query?

Execution time of multiple concurrent queries?

Single node or a cluster?

Data latency?

Maximum time? Median? Percentile?

7

© 2024 Altinity, Inc.

Bottlenecks may be different too

I/O?

CPU?

RAM?

Network?

Background operations?

ZooKeeper?

8

© 2024 Altinity, Inc.

Single Query
Optimization

9

© 2024 Altinity, Inc.

Plan of Attack

Find the slow query

Check if it is slow by itself or
because of other workloads

Find the reason it is slow

Optimize

10

© 2024 Altinity, Inc.

Our tools

benchmarks

query_log

ProfileEvents

metric_log, asynchronous_metric_log

EXPLAIN …
clickhouse logs, set log_level=’trace’

trace_log

11

© 2024 Altinity, Inc.

Do benchmarks!

“But on staging it used to work fast…”

 Do you have the same amount of data on staging?

 Are you sure it’s slow on every run on production?

 What are other queries running? Also merges / mutations / backups etc.

clickhouse-benchmark is your friend!

12

© 2024 Altinity, Inc.

Benchmarks: what can you look at?

Basic stats (execution speed, memory, bytes read etc)

ProfileEvents in query_log (you can also see them in clickhouse-client)

$ clickhouse-client --print-profile-events --profile-events-delay-ms=-1

13

© 2024 Altinity, Inc.

Benchmarks: A/B tests of the same query?

WITH
query_id='8c050082-428e-4523-847a-caf29511d6ba' AS first,
query_id='618e0c55-e21d-4630-97e7-5f82e2475c32' AS second,
arrayConcat(mapKeys(ProfileEvents), ['query_duration_ms', 'read_rows', 'read_bytes', 'written_rows',

'written_bytes', 'result_rows', 'result_bytes', 'memory_usage', 'normalized_query_hash', 'peak_threads_usage',
'query_cache_usage']) AS metrics,

arrayConcat(mapValues(ProfileEvents), [query_duration_ms, read_rows, read_bytes, written_rows, written_bytes,
result_rows, result_bytes, memory_usage, normalized_query_hash, peak_threads_usage, toUInt64(query_cache_usage)]) AS
metrics_values
SELECT

metrics[i] AS metric,
anyIf(metrics_values[i], first) AS v1,
anyIf(metrics_values[i], second) AS v2,
formatReadableQuantity(v1 - v2)

FROM clusterAllReplicas(default, system.query_log)
ARRAY JOIN arrayEnumerate(metrics) AS i
WHERE (first OR second) AND (type = 2)
GROUP BY metric
HAVING v1 != v2
ORDER BY

(v2 - v1) / (v1 + v2) DESC,
v2 DESC,
metric ASC

14

Altinity gratefully acknowledges
this nice example code
developed by Alexey Milovidov
© 2024 ClickHouse Inc.

© 2024 Altinity, Inc.

Benchmarks: A/B tests of the same query?

15

© 2024 Altinity, Inc.

Benchmarks: What changed / what was the impact?

You can easily compare the ‘before’ and ‘after’ query by query…

https://kb.altinity.com/altinity-kb-useful-queries/compare_query_log_for_2_intervals/

16

https://kb.altinity.com/altinity-kb-useful-queries/compare_query_log_for_2_intervals/

© 2024 Altinity, Inc.

Finding the slow query

17

CPU usage OSCPUVirtualTimeMicroseconds / UserTimeMicroseconds

Disk throughput read_bytes / written_bytes / DiskReadElapsedMicroseconds /
DiskWriteElapsedMicroseconds

Network NetworkReceiveBytes / NetworkSendBytes

RAM memory_usage

Zookeeper ZooKeeperTransactions

Load Average number of concurrent queries (count & CurrentMetric_Query) &
threads (peak_threads_usage & CurrentMetric_GlobalThreadActive)

© 2024 Altinity, Inc.

Finding the slow query

SELECT
normalized_query_hash,

 any(query),
count(),
sum(ProfileEvents['OSCPUVirtualTimeMicroseconds']) AS

OSCPUVirtualTime
FROM clusterAllReplicas('{cluster}', system.query_log)
WHERE event_time between ...
 AND type in (2,4)
GROUP BY normalized_query_hash
ORDER BY OSCPUVirtualTime DESC
LIMIT 30
FORMAT Vertical

18

Groups similar queries!

Shows one sample

Shows the top of
‘metric’-intensive

More complicated example: https://kb.altinity.com/altinity-kb-useful-queries/query_log/

https://kb.altinity.com/altinity-kb-useful-queries/query_log/

© 2024 Altinity, Inc.

I/O is typically the key metric for performance

“Good” Queries:

- Read “little” GB
- Read it fast: >1GB/sec

19

“Bad” Queries:

- Read “a lot” GBs
- Read it slow: 10s-100s MB/Sec

© 2024 Altinity, Inc.

What if a query reads a lot…

Full Scan?

● EXPLAIN indexes=1
● EXPLAIN ESTIMATE
● set send_logs_level = 'debug'
● force_primary_key, force_index_by_date, force_data_skipping_indices,

force_optimize_projection, force_optimize_projection_name

20

SELECT toString(date) as date FROM table WHERE date = '2023-01-01'

What about this query?

© 2024 Altinity, Inc.

EXPLAIN indexes = 1 SELECT …

21

© 2024 Altinity, Inc.

EXPLAIN ESTIMATE …

22

© 2024 Altinity, Inc.

Fixing Full Scan

Causes:

‘Missing’ the WHERE condition
WHERE non_pk_col=10

Bad ORDER BY / PRIMARY KEY

ORDER BY (unique_id)

Complex logical expressions

Complex (non-monotonic) functions

23

Fixes:

Add the WHERE condition
WHERE … AND pk_col=’foo’

Fix ORDER BY / PRIMARY KEY

ORDER BY (tenant, category, event)

Simplify expressions

Rewrite use of functions
 WHERE cityHash64(col) =
cityHash64(‘expr’)

© 2024 Altinity, Inc.

Not a full scan but still reads a lot…

Just a lot of data

Inefficient reading of columns

CTE reuse

Use pre-aggregations of projects

Force PREWHERE

Avoid CTE reuse, or move it to temporary
table

24

© 2024 Altinity, Inc.

How PREWHERE works

Normal WHERE logic:

SELECT * FROM table
WHERE col1=...

PREWHERE logic:

SELECT * FROM table
WHERE (pk) IN (SELECT pk FROM
table WHERE col1=...)

25

┌─name───┬─value─┐
│ optimize_move_to_prewhere │ 1 │
│ optimize_move_to_prewhere_if_final │ 0 │
│ move_all_conditions_to_prewhere │ 1 │
│ enable_multiple_prewhere_read_steps │ 1 │
│ move_primary_key_columns_to_end_of_prewhere │ 1 │
│ query_plan_optimize_prewhere │ 1 │
│ merge_tree_determine_task_size_by_prewhere_columns │ 1 │
└──┴───────┘

© 2024 Altinity, Inc.

Other possible reasons for slow reads

● Slow disk
● Saturated disk (merges? mutations? backup?)
● S3 (is it needed? add cache)
● Overly aggressive compression:

○ CODEC(Gorilla, ZSTD(16)) – excellent compression. Never do it!

26

© 2024 Altinity, Inc.

Reads are fast – query is slow

● Prefer simple things
● Learn ‘ClickHouse-ways’

○ Grace Hopper: "The most dangerous phrase in the language is, 'We’ve
always done it this way.'"

○ There Is More Than One Way To Do It - Perl’s motto is often true for SQL

● Computations: query time vs insert time
○ MATERIALIZED columns

● Process every row & every column only once

27

© 2024 Altinity, Inc.

Slow expression on every row

lowerUTF8(column) = ‘foo’ => lower(column) = ‘foo’

column IN (‘foo’,’FOO’)

Or maybe just normalize (do lowercase) once at the insert time?

28

© 2024 Altinity, Inc.

Multiple evaluations

WHERE lower(logline) like '%f4079%'
 or lower(logline) like '%f00004079%'
 or lower(logline) like '%f04079%'
 or lower(logline) like '%f004079%'
 or lower(logline) like '%f0004079%'
 or lower(logline) like
'%f000004079%'

SELECT
 JSONExactString(json, 'a'),
 JSONExactString(json, 'b'),
 JSONExactString(json, 'c')

29

WHERE match(logline, '[Ff]0*4079')

WITH

 JSONExtract(json, 'Tuple(a String, b

String, c String') as json_parsed

SELECT

 tupleElement(json_parsed, 'a') as a,

 tupleElement(json_parsed, 'b') as b,

 tupleElement(json_parsed, 'c') as c

© 2024 Altinity, Inc.

Slow aggregation / sorting

● Benchmark it: do simple A/B test without ORDER BY / GROUP BY
● When possible do computations on the aggregated data

sum(10*col) => 10*sum(col) (in simple cases ClickHouse will do it automatically)

● Injective functions / injective dictionaries - apply them after the group by

select dictGet(dict,’attr’,col) as col_undict group by col_undict
vs
select dictGet(dict,’attr’,col) as col group by col?

● Datatypes matters (prefer simpler)
● Some aggregate functions states can be huge & expensive

Are you sure you need uniqExact not uniqCombined ?

● Low level: two-level aggregation, max_bytes_before_external, distributed_memory_efficient_ etc.

30

© 2024 Altinity, Inc.

Slow JOINs

No cost-based optimizer!

Do you need JOIN at all?

Denormalization (= insert-time join)

Dictionaries (~ always in RAM)

settings join_algorithm = 'direct', 'grace_hash', 'parallel_hash',
'prefer_partial_merge', 'hash', 'partial_merge', 'full_sorting_merge'

31

© 2024 Altinity, Inc.

Join Optimizations: GROUP BY key first

SELECT zone,
 sum(passenger_count)
FROM tripdata
INNER JOIN taxi_zones ON
taxi_zones.location_id =
pickup_location_id
WHERE toYear(pickup_date) = 2016
GROUP BY 1 ORDER BY 2 desc
LIMIT 10

400ms

32

SELECT zone,
 sum(passenger_count)
FROM
(SELECT
 pickup_location_id,
 sum(passenger_count) passenger_count
 FROM tripdata
 WHERE toYear(pickup_date) = 2016
 GROUP BY 1) t
INNER JOIN taxi_zones ON
taxi_zones.location_id =
pickup_location_id
GROUP BY 1 ORDER BY 2 desc
LIMIT 10

100ms

© 2024 Altinity, Inc.

Join Optimizations: replace JOIN with IN

SELECT
toYear(pickup_date),

 sum(passenger_count)
FROM tripdata
INNER JOIN taxi_zones ON
taxi_zones.location_id =
pickup_location_id
WHERE zone = 'Union Sq'
GROUP BY 1 ORDER BY 1

680ms

33

SELECT
toYear(pickup_date),

 sum(passenger_count)
FROM tripdata
WHERE pickup_location_id in (SELECT
location_id from taxi_zones WHERE zone =
'Union Sq')
GROUP BY 1 ORDER BY 1

40ms

© 2024 Altinity, Inc.

Distributed Queries

● How Distributed get rewritten into shard query?
○ deep-most subquery!

● JOIN / IN - distributed_product_mode - be careful!
● Data locality - join on shards etc.

○ sharding key - choice can be non-obvious
○ distributed_group_by_no_merge
○ optimize_skip_unused_shards

● Check how much data do they exchange
● prefer_localhost_replica=1 (default) sometimes can create suboptimal

pipelines

34

© 2024 Altinity, Inc. 35

ATTENTION in 24.3

allow_experimental_analyzer = 1

© 2024 Altinity, Inc.

RAM and Caches
RAM is your friend

36

© 2024 Altinity, Inc.

All about caches https://altinity.com/blog/caching-in-clickhouse-the-definitive-guide-part-1

What’s in memory?

37

Block Storage

Object Storage
disk cache

index cache

query cache

dictionaries

dictionary
source

SELECT hash tables sort output
buffer

uncompressed
blocks buffer

INSERT
new data
blocks buffer

MERGE

uncompressed
blocks buffer
new data
blocks buffer

OS page cache

mark cache

uncompressed blocks cache

https://altinity.com/blog/caching-in-clickhouse-the-definitive-guide-part-1

© 2024 Altinity, Inc.

Page Cache and Disk Cache – raw data caches
With page cache – 7 seconds:

SELECT event_type, count()
 FROM github_events
 WHERE repo_name ilike
'ClickHouse/ClickHouse'
 AND title ilike '%cache%'
GROUP BY 1

┌─event_type────────────────────┬─count()─┐
│ IssueCommentEvent │ 1410 │
│ IssuesEvent │ 307 │
│ PullRequestEvent │ 1348 │
│ PullRequestReviewCommentEvent │ 1296 │
│ PullRequestReviewEvent │ 1498 │
└───────────────────────────────┴─────────┘

38

Without page cache – 20 seconds:

SELECT event_type, count()
 FROM github_events
 WHERE repo_name ilike
'ClickHouse/ClickHouse'
 AND title ilike '%cache%'
GROUP BY 1
SETTINGS min_bytes_to_use_direct_io=1

Metrics: OSReadChars - OSReadBytes = amount of data read from the page cache

© 2024 Altinity, Inc.

Mark Cache and Index Cache – query pipeline caches

39

Index is used to select
marks – always in RAM

Marks are used to
fseek data in a column
– 5GB by default

SELECT event, value FROM
system.events WHERE event LIKE
'Mark%';

┌─event───────────┬───value─┐
│ MarkCacheHits │ 5566956 │
│ MarkCacheMisses │ 84063 │
└─────────────────┴─────────┘

© 2024 Altinity, Inc.

Query Cache – caches final results for repetitive queries

40

SELECT event_type, count()
 FROM github_events
 WHERE repo_name ilike
'ClickHouse/ClickHouse'
 AND title ilike '%cache%'
SETTINGS use_query_cache=1

First run: cache warm up
Second run: 0.001s

Server configuration:

<query_cache>
 <max_size_in_bytes>1073741824</max_size_in_bytes>
 <max_entries>1024</max_entries>
 <max_entry_size_in_bytes>1048576</max_entry_size_in_bytes>
 <max_entry_size_in_rows>30000000</max_entry_size_in_rows>
</query_cache>

Query/profile settings:

SELECT * from system.settings WHERE name LIKE 'query_cache%'

query_cache_ttl
query_cache_min_query_runs
query_cache_min_query_duration

© 2024 Altinity, Inc.

Summary: Things to keep in mind
● More memory is better. ‘Unused’ memory goes to page cache.

● Using swap slows ClickHouse down significantly. Disable it.

● ClickHouse process is locked in memory

(config.xml:mlock_executable).

● Use max_server_memory_usage_to_ram_ratio to avoid OOM killer

● ClickHouse does not release memory immediately.

● ClickHouse uses the memory overcommit technique

● ClickHouse requires tuning to work in systems with low amount of memory

41

https://clickhouse.com/docs/en/operations/server-configuration-parameters/settings#max_server_memory_usage
https://clickhouse.com/docs/en/operations/settings/memory-overcommit

© 2024 Altinity, Inc.

Optimizing for
Concurrency

42

© 2024 Altinity, Inc.

100000 concurrent queries…

● May I increase max_concurrent_queries? Not too much.
○ High contention, numerous context switches, elevated load averages, and suboptimal

performance

● High concurrency is possible if queries execute almost instantaneously
● Enabling a queue (queue_max_wait_ms) provides a buffer during peak times,

helping to manage overflow and maintain system stability
● Decrease max_threads (even to 1) or use concurrent_threads_soft_limit_num
● Load balancing

○ Multiple replicas increase QPS
○ Instead of distributed queries consider intelligent balancing strategies, which will send direct

queries to the specific node, instead of running cluster-wide queries.

43

© 2024 Altinity, Inc.

100000 concurrent queries…

Maybe you need some caching layer on the app side?

Know your load - plan the background jobs carefully

Continuously review and refine every query for performance

Have ‘plan B’ - it can be throttling, showing cached data or disabling some
non-important loads, or plan the dynamic cluster rescaling

44

© 2024 Altinity, Inc.

Query overhead (high QPS)

simplify queries!

log_queries_probability=0..1

log level=information

45

Parsing
query

Logging
query
start

Optimizers &
preparing the

pipeline
Executing the pipeline Logging

query end

© 2024 Altinity, Inc.

Wrap-up and more
information

46

© 2024 Altinity, Inc.

Where is the documentation?

ClickHouse official docs – https://clickhouse.com/docs/

Altinity Blog – https://altinity.com/blog/

Altinity Youtube Channel –
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA

Altinity Knowledge Base – https://kb.altinity.com/

Meetups, other blogs, and external resources. Use your powers of Search!

47

https://clickhouse.com/docs/
https://altinity.com/blog/
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA
https://kb.altinity.com/

© 2024 Altinity, Inc.

Where can I get help?

Telegram - ClickHouse Channel

Slack

● ClickHouse Public Workspace - clickhousedb.slack.com
● Altinity Public Workspace - altinitydbworkspace.slack.com

Education - Altinity ClickHouse Training

Support - Altinity offers support for ClickHouse in all environments

Free Consultation - https://altinity.com/free-clickhouse-consultation/

48

https://t.me/clickhouse_en
https://altinity.com/clickhouse-training/
https://altinity.com/support/
https://altinity.com/free-clickhouse-consultation/

© 2024 Altinity, Inc. ((c) 2024 Altinity Inc.
49

Thank you
and good

luck!

Website: https://altinity.com
Email: info@altinity.com
Slack: altinitydbworkspace.slack.com

Altinity.Cloud

Altinity Support

Altinity Stable Builds

We’re hiring!

https://altinity.com
mailto:info@altinity.com
https://join.slack.com/t/altinitydbworkspace/shared_invite/zt-192cbjbrn-jMAk4aVGZSsvhv_DGUrtFw
https://altinity.com/cloud-database/
https://altinity.com/24x7-support/
https://docs.altinity.com/altinitystablebuilds/
https://altinity.com/careers/

