3 Altinity 4
ClickHouse Defense
Against the Dark Arts

Intro to Security and Privacy

Altinity Engineering Team

Presenter Bios and Altinity Introduction

Robert Hodges - Altinity CEO\ (Alexander Zaitsev - Altinity CTO\
30+ years on DBMS plus Altinity founder with decades
virtualization and security. of expertise on petabyte-scale
ClickHouse is DBMS #20 analytic systems
_ _/ _ _/

€% Altinity

The #1 enterprise ClickHouse provider. Now offering

Major committer and community sponsor for ClickHouse in US/EU

£5 Altinity

https://altinity.com/cloud-database/

ﬁ;:AQAltihfity'Contributions on security and privacy

e Completed work

Log query masking (implementation and testing)

AES encryption functions (implementation and testing)
RBAC (testing)

LDAP user authentication (implementation and testing)
LDAP role mapping (implementation and testing)

-flight work

Server-side Kerberos support (implementation and testing)
BoringSSL encryption (testing)

Lightweight DELETE/UPDATE (implementation and testing)
Audit trail (implementation and testing)

e Roadmap

o Trusted builds, FedRAMP/FIPS compliance, transparent data encryption

O O O O =93 0O O O 0O O

£5 Altinity

Introducing
ClickHouse

~ ClickHouse is an open source data warehouse

Single binary And it's really fast!
Understands SQL @ b e d | a2 b ocd |
| |
Runs on bare metal to cloud : :
: \j \ 4
Stores data N columns ClickHouse Server ClickHouse Server
Parallel and vectorized execution a b c d a b c d
| |
| |
Scales to many petabytes : :
| |
Is Open source (Apache 2.0) v v
ClickHouse Server ClickHouse Server

£ Altinity

Butlts not enough to be fast

Protecting ClickHouse and Building applications that
data within it from internal comply with standards for
and external attacks protecting user data

£3 Altinity

Securing
ClickHouse
Servers

~ Topics for securing servers

£ Altinity

Setting up users

Authorizing access to resources
Encrypting in-flight communications
Encrypting data at rest

Preventing data leakage

Securing your ClickHouse host

/etc/clickhouse-server/users.d/

~ “Classic” user definition with XML

my profile.xml demo.xml
<yandex> <yandex>
<profiles> <users>
<my_profile> <demo>
[N h [N
</my_profile> </demo>
</profiles> </users>
</yandex> </yandex>
Config settings and
g g DBMS user

£5 Altinity

resource limits

my_gquota.xml
<yandex>
<quotas>
<my_quota>

</my_quota>
</quotas>
</yandex>

Usage quotas

~ Defining a root user

£5 Altinity

<users>
<root>

<password sha256 hex>2bb80...7a25b</password sha256 hex>

<networks>

<ip>127.0.0.1</ip> @—
</networks>

Localhost login
only

<profile>default</profile>
<quota>default</quota>
<access_management>l</access management>
</root>
</users>

Can create users
and grant rights
with RBAC

10

o Tlpsfor defining users

Generating passwords -- don't forget -n’

echo . "secret" | sha256sum | tr -4 '-'

Network masks:
Localhost only
<networks> /
<ip>127.0.0. 1</j_p> / Allow from subnet
<host>logos2</host> /
<host regexp>“logos[1234]$</host regexp>

</networks> \ Allow from logos1,

logos2, logos3, logos4 .

£5 Altinity

~ Wouldn't this be better in SQL?

Yes! Here's what you can do as of ClickHouse version 20.5

-- Create a read-only user that can only access default db.
CREATE USER IF NOT EXISTS read only
IDENTIFIED WITH SHA256 PASSWORD BY 'secret'
HOST IP '192.168.128.1/24' SETTINGS readonly=1l;
REVOKE ALL ON *.* FROM read only;
CREATE ROLE select on default;
GRANT SELECT ON default.* TO select on default;
GRANT select on default TO read only;

. 12
£5 Altinity

o RBAC grants/revokes are very granular

£ Altinity

Tables: CREATE, INSERT, ALTER, DELETE, SELECT,
TRUNCATE, OPTIMIZE, DROP...

Database: CREATE, DROP, SHOW

Access management: USER, ROLE, POLICY, ROW POLICY,
QUOTA, PROFILE, ...

SYSTEM commands: SHUTDOWN, DROP CACHE, RELOAD,

13

W

CREATE USER IF NOT EXISTS readonly
IDENTIFIED WITH SHA256 PASSWORD BY 'secret'
HOST IP '192.168.128.1/24"

SETTINGS readonly=1;

/var/lib/clickhouse/access/
5b49c973-124c-4cae-f1e8-14e0644abe91.sql

ATTACH USER read only IDENTIFIED

:> WITH sha256 hash BY
'2BB80...7A25B' HOST IP
'192.168.128.0/24' SETTINGS
readonly = 1;

- 14
£5 Altinity

~ LDAP authentication is available since 20.8

CREATE USER IF NOT EXISTS ldap user)////
IDENTIFIED WITH ldap server BY 'ldap local'

HOST ANY

£5 Altinity

LDAP server name in
config.xml

Note: keyword will
change to ‘Idap’ when
Kerberos support is
added

15

~ LDAP authentication flow

clickhouse-client
—-—-user=ldap user
--password=secret

£5 Altinity

config.xml
<yandex>
<ldap_servers>
<ldap_local>
<host>ldap-01</host>

</ldap_local> ...

LDAP Server

'

uid=ldap_user, ou=user
s,dc=example, dc=com
=>

userPassword: secret

16

i jIni-ﬂzigh"tConnec:’tions: attack surfaces

HTTP Client ClickHouse Server

(Fetching parts for

Native TCP Client replication)

o S P S

/ MySQL Client ~_
\:\

|

|

PostgreSQL Client

[
|
|
|
| Native Client via
| PROXYv1
|
|
|
|
\

|
|
gRPC Client : >
|
Prometheus ________—p»

‘._ Metrics Exporter ./

o s e s e e e e e e e e e e e e

17

£5 Altinity

o Stepsto protect in-flight connections

1. Turn off all unused ports

2. Enable TLS encryption for native TCP and HTTP clients
o Disable unencrypted ports

3. For clusters:
o Switch to TLS on interserver communications
o Define user for remote calls

L 18
£3 Altinity

~ Turning off unused ports

/etc/clickhouse-server/config.xml

<mysql port>9004</mysql port>

<interserver http port>9009</interserver http port>

v

<!-- <mysql port>9004</mysql port> -->

<!-- <interserver http port>9009</interserver http port> -->

. 19
£5 Altinity

Enabllng TLS client connections

/etc/clickhouse-server/config.xml

<!-- <http port>8123</http port> -->
<!-- <tcp_port>9000</tcp port> -->

<https port>8443</https port>
<tcp_port secure>9440</tcp_port secure>
<openSSL>
<server>
<certificateFile>/etc/clickhouse-server/server.crt</certificateFile>

<privateKeyFile>/etc/clickhouse-server/server.key</privateKeyFile>
<dhParamsFile>/etc/clickhouse-server/dhparam.pem</dhParamsFile>

£ Altinity

20

Options for ClickHouse server certificates

Ideal for external services Ideal for internal services Useful for testing. Never
or services with clients where you control the use this approach for real
you don't control clients and their operating data.

environment

For more information: https://altinity.com/blog/2019/3/5/clickhouse-networking-part-2

. 21
£5 Altinity

https://altinity.com/blog/2019/3/5/clickhouse-networking-part-2

Tlpsand gotchas for TLS encryption

£5 Altinity

Connection credentials are transmitted in the clear unless you enable TLS!
Certificates from non-public CAs require different steps for each app type

export NODE EXTRA CA CERTS=/etc/ssl/certs/my.root.ca.pem
node my-tls-enabled-client. js

Internal root CAs require proper security hygiene to maintain
Check ports to make sure you enabled/disabled correctly

sudo netstat -1lntp |grep clickhouse

tcp6 0 0O :::8443 :::* LISTEN 7768/clickhouse-ser
tcp6 0 0O :::9440 :::* LISTEN 7768/clickhouse-ser
tcp6 0 0 :::9010 :::* LISTEN 7768/clickhouse-ser

22

- Encrypting ClickHouse cluster traffic

. 23
£ Altinity

o Create a user for distributed queries

CREATE USER IF NOT EXISTS internal ON CLUSTER 'my cluster'
IDENTIFIED WITH NO_PASSWORD
HOST REGEXP '“logos[1234]$'

\ Network mask restricts

user to within cluster

. 24
£5 Altinity

~ Enable TLS for interserver replication

/etc/clickhouse-server/config.xml

<yandex>

<password></password>
</interserver http credentials>

<!-- <interserver http port>9009</interserver http port> -->

<interserver https port>9010</interserver https port> -->

<interserver http credentials> \
<user>internal</user>

Secure
interserver port

\

Enable interserver auth

£ Altinity

25

~ TLS connections for distributed queries

/etc/clickhouse-server/config.d/remote_servers.xml

<yandex>
<remote_servers>
<my cluster>
<shard>

<replica>

<internal replication>true</internal replication>

Secure port and TLS

<host>logosl</host>
<port>9440</port>‘Ar”””’
<secure>1l</secure>
<user>internal</port>

</replica> \

</shard>

User with no password

£ Altinity

26

o New in ClickHouse 20.10+ (preferred way)

/etc/clickhouse-server/config.d/remote_servers.xml

<yandex> Use initial user across
<remote_servers>

servers; authenticate
<my_cluster> / with secret
<shard>
<secret>shared secret text</secret>
<internal replication>true</internal replication>
<replica>
<host>logosl</host>
<port>9440</port>
<secure>1</secure>\ Secure port and TLS

</replica> (as before)

</ shard> ()

. 27
£ Altinity

https://github.com/ClickHouse/ClickHouse/pull/13156

~Encryption at-rest, option 1: file system

File system encryption is the simplest path to global at-rest encryption.
Some of our favorite options:

1. LUKS (Linux Unified Key Setup) -- Encrypt local volume using DMCrypt

2. Cloud block storage encryption - Use public cloud automatic encryption
a. Example: Amazon EBS encryption

3. Kubernetes storage provider encryption -- Enable encryption in StorageClass if

supported.
a. Example: AWS EBS provider encrypted: “true” option

. 28
£5 Altinity

£5 Altinity

~ Encryption at-rest, option 2: AES functions

Starting in 20.11 these can be used to protect data at level of individual
columns.

encrypt (mode, plaintext, key, [iv, aad])
decrypt (mode, ciphertext, key, [iv, aad])
aes encrypt mysql (mode, plaintext, key, [iv])*
aes decrypt mysql (mode, ciphertext, key, [iv])?¥*

Key management is responsibility of applications (for now)

*Compatible with MySQL AES functions

29

~ Examples of AES functions in use

WITH unhex ('658bb26de6f8a069a3520293a572078f"') AS key
SELECT hex (encrypt('aes-128-cbc', 'Hello world', key)) AS encrypted

—encrypted

46924AC12F4915F2EEF3170B81A1167E
I I

WITH unhex ('658bb26de6£8a069a3520293a572078f"') AS key
SELECT decrypt('aes-128-cbc’',

unhex ('46924AC12F4915F2EEF3170B81A1167E"), key) AS plailintext

—plaintext——
Hello world _

. 30
£5 Altinity

Av0|d|ng data leakage with query masking

ClickHouse log entry for our query examples:

2021.01.26 19:11:23.5260691 [1652] {4el96dfa-ddo65-4cba-983b-dobb2c3df7c8}

<Debug> executeQuery: (from [::ffff:127.0.0.1]:54536, using production

parser) WITH unhex ('658bb26de6f8a069a3520293a572078f"') AS key SELECT
Sensitive

decrypt (??27?), key) AS plaintext
arguments are

gone!ll

. 31
£5 Altinity

: How to make queries “disappear” from logs

/etc/clickhouse-server/config.xml

<query masking rules>
<rule>
<name>hide encrypt/decrypt arguments</name>
<regexp>

N\ L)+ *?) \s*))
</regexp>
<!-- or more secure, but also more invasive:
(aes_\w+) \s*\ (.*\)

-->
<replace>\1(???)</replace>

</rule>

</query masking rules>

((?:aes_)?(?:encrypt|decrypt) (?: mysql) ?)\s*\ (\s*(?:'(?:

£5 Altinity

32

£5 Altinity

. Flnal tips: host-level security

ClickHouse runs as clickhouse user (root access not required)
Protect directories containing data and credentials

a. /etc/clickhouse-server -- Credentials

b. /var/lib/clickhouse - Data and (new!) credentials

c. /var/log/clickhouse-server -- Logs, SQL queries may be exposed
Protect the network around ClickHouse

a. Load balancers, firewalls

b. Make server network non-routable to outsiders as far as possible

33

Building
Privacy-aware
Applications

~ Multi-tenancy models

Model

Dedicated Installation

Dedicated Cluster

Dedicated Databases

Dedicated Tables

Shared Tables

£5 Altinity

How it works

Separate ClickHouse per tenant

Set of shards and replicas per
tenant

Separate database per tenant

Separate table(s) per tenant

Tenant data inhabits shared tables.
Each row has a tenant key

Shared resources

Network?

ZooKeeper, configuration files,
network

ZooKeeper, ClickHouse hosts,

configuration, network

ZooKeeper, ClickHouse hosts,
configuration, network

ZooKeeper, ClickHouse hosts,
tables, configuration, network

w
()]

~ Restricting user access in shared clusters

Using configuration in users.xml:

<yandex>
<users>
<demo>
<allow_databases>
<database>demo</database>

</allow_databases> Restrict access to
</demo> DB
</users>

Restrict access to
Using RBAC: / a table

GRANT SELECT ON demo.* TO demo » /
GRANT SELECT ON customers.demo2 table TO demo2

. 36
£5 Altinity

~ Row-level access control

Using configuration in users.xml:

<yandex>
<users>
<demo>
<databases>
<default>
<my table>
<filter>user id='demo'</filter>
</my_table>

</default>

</demo>

</databases> Restrict access to rows

</users>

Using RBAC:

CREATE ROW POLICY filter ON default.my table FOR SELECT USING user_id='demo' TO demo

£5 Altinity

37

DELETE tenant data efficiently

Efficient if partition is dropped fully

£5 Altinity

ALTER TABLE DROP PARTITION

Database or table per tenant -- easy to drop, but does not scale well
beyond dozens or low hundreds

Partition per tenant - easy to drop, scales to 1000s, row-level security
required

All shared -- expensive to drop (ALTER TABLE DELETE), scales well

o ALTER TABLE DELETE IN PARTITION--availablein 20.12
o Lightweight DELETEs in 2021 roadmap

38

. Data retention options

£3 Altinity

CREATE TABLE (

) Engine = MergeTree

TTL DELETE toStartOfMonth(date) + interval 1 month -- efficient with monthly
partitioning

TTL DELETE date + ttl_days_to_keep - efficient with daily partitioning

TTL DELETE date + dictGet(‘tenant_ttl’, ‘ttl_days’, tenant_id) -- configure externally
TTL DELETE WHERE -- arbitrary expression

ttl_only_drop_parts=1 (default 0) -- make sure no expensive operations

Column TTLs:

customer id UUID TTL date + interval 1 month

39

Otherthmgs to consider in app design

e System.query_log, system.text_log, system.processes
access

e Encrypting sensitive data with AES functions
o “Losing” keys as a way of deleting data

e C(Constraints on settings:

(@)

e Secrets management
o Currently an application responsibility
o Inroadmap (“Transparent data encryption”)

. 40
£5 Altinity

https://clickhouse.tech/docs/en/operations/settings/constraints-on-settings/

__Summary

£5 Altinity

ClickHouse security advanced rapidly in 2020

o RBAC, LDAP authentication, AES encryption

Rich feature set to secure data in-flight and at-rest

Privacy is a property of application design

Major improvements on tap in 2021

o Already merged: BoringSSL for TLS, LDAP role mapping
o In progress: Kerberos, lightweight DELETE/UPDATE

42

ClickHouse;

Thank YOU! https://qithub.com/ClickHouse/
ClickHouse
Contact us to Altinity Blog:

https://altinity.com/blog

discuss ClickHouse
security needs

Contact:
info@altinity.com

43

https://github.com/ClickHouse/ClickHouse
https://github.com/ClickHouse/ClickHouse
https://altinity.com/blog
mailto:info@altinity.com

