

Presenter Bios

Adam Brown -- Head of
Technology and Architecture

Co-founder of Mux with extensive
experience in video encoding and
delivery going back to Zencoder

Robert Hodges - Altinity CEO

30+ years on DBMS plus
virtualization and security.
ClickHouse is DBMS #20

Company Intros

www.altinity.com

Leading software and services
provider for ClickHouse

Major committer and community
sponsor in US and Western Europe

mux.com

Mux Video is an API-first platform,
powered by data and designed by

video experts to make beautiful video
possible for every development team.

https://www.mux.com/

Data and Video
Delivery

Standard Media Workflow (w/o Mux)

Standard Media Workflow

Payments before Stripe Messaging before Twilio

Payments using Stripe Messaging using Twilio

Standard Media Workflow (w/o Mux)

Mux Products

Mux Video Mux Data

Mux Data Overview

Data Sources

● Mux Data SDKS
● CDN Logs
● Internal Monitoring

SDKs

Example Use Case

15

Data drives video engine

ClickHouse
features that
enable Mux

Introducing the MergeTree table engine

CREATE TABLE ontime (
 Year UInt16,
 Quarter UInt8,
 Month UInt8,
 ...
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(FlightDate)
ORDER BY (Carrier, FlightDate)

Table engine type

How to break data
into parts

How to index and
sort data in each part

MergeTree layout within a single part
/var/lib/clickhouse/data/airline/ontime_reordered

2017-01-01 AA
2017-01-01 EV
2018-01-01 UA
2018-01-02 AA
...

primary.idx

 | | | |

.mrk2 .bin

20170701_20170731_355_355_2/
(FlightDate, Carrier...) ActualElapsedTime Airline AirlineID...

 | | | |

.mrk2 .bin
 | | | |

.mrk2 .bin

Granule
Compressed
Block Mark

Compression and codecs are configurable

CREATE TABLE test_codecs (
 a_lz4 String CODEC(LZ4),
 a_zstd String DEFAULT a_lz4 CODEC(ZSTD),
 a_lc_lz4 LowCardinality(String) DEFAULT a_lz4 CODEC(LZ4),
 a_lc_zstd LowCardinality(String) DEFAULT a_lz4 CODEC(ZSTD)
)
Engine = MergeTree
PARTITION BY tuple() ORDER BY tuple();

Effect on storage size is dramatic

20.84% 12.28%

10.61%
10.65%

7.89%

How do you get those nice numbers?
SELECT name AS col,
 sum(data_uncompressed_bytes) AS uncompressed,
 sum(data_compressed_bytes) AS compressed,
 round((compressed / uncompressed) * 100., 2) AS pct,
 bar(pct, 0., 100., 20) AS bar_graph
FROM system.columns
WHERE (database = currentDatabase()) AND (table = 'test_codecs')
GROUP BY name ORDER BY pct DESC, name ASC

┌─col───────┬─uncompressed─┬─compressed─┬────pct─┬─bar_graph────────────┐
│ a_lc_lz4 │ 200446439 │ 201154656 │ 100.35 │ ████████████████████ │
│ a_lc_zstd │ 200446439 │ 148996404 │ 74.33 │ ██████████████▋ │
│ a_lz4 │ 1889003550 │ 393713202 │ 20.84 │ ████ │
│ a_zstd │ 1889003550 │ 231975292 │ 12.28 │ ██▍ │
└───────────┴──────────────┴────────────┴────────┴──────────────────────┘

Materialized views restructure/reduce data

cpu
TableIngest

All CPU measurements Last measurement by CPU

cpu_last_point_agg
SummingMergeTree

(Trigger)

Compressed: ~0.0009%
Uncompressed: ~0.002%

cpu_last_point_mv
Materialized View

CREATE MATERIALIZED VIEW cpu_last_point_mv
TO cpu_last_point_agg
AS SELECT
 cpu_id,
 maxState(created_at) AS max_created_at,
 . . .
 argMaxState(usage_idle, created_at) AS usage_idle
FROM cpu GROUP BY cpu_id

Pattern: TTLs + downsampled views

CREATE TABLE web_visits (
 time DateTime CODEC(DoubleDelta,
ZSTD),
 session_id UInt64,
 visitor_id UInt64, . . .
) Engine = MergeTree
PARTITION BY toDate(time)
ORDER BY (session_id, time)
TTL time + INTERVAL 7 DAY

web_visitsIngest hourly_uniq_visits

hourly_sessions

Ephemeral source data Long-term aggregates

SET allow_experimental_data_skipping_indices=1;

ALTER TABLE ontime ADD INDEX
 dest_name Dest TYPE ngrambf_v1(3, 512, 2, 0) GRANULARITY 1

ALTER TABLE ontime ADD INDEX
 cname Carrier TYPE set(0) GRANULARITY 1

OPTIMIZE TABLE ontime FINAL
-- OR, in current releases
ALTER TABLE ontime
 UPDATE Dest=Dest, Carrier=Carrier
 WHERE 1=1

Skip indexes cut down on I/O

Default value

Effectiveness depends on data distribution
SELECT
 Year, count(*) AS flights,
 sum(Cancelled) / flights AS cancelled,
 sum(DepDel15) / flights AS delayed_15
FROM airline.ontime WHERE [Column] = [Value] GROUP BY Year

Column Value Index Count Rows Processed Query Response

Dest PPG ngrambf_v1 525 4.30M 0.053

Dest ATL ngrambf_v1 9,360,581 166.81M 0.622

Carrier ML set 70,622 3.39M 0.090

Carrier WN set 25,918,402 166.24M 0.566

More table engines: CollapsingMergeTree
CREATE TABLE collapse (user_id UInt64, views UInt64, sign Int8)
ENGINE = CollapsingMergeTree(sign)
PARTITION BY tuple() ORDER BY user_id;

INSERT INTO collapse VALUES (32, 55, 1);
INSERT INTO collapse VALUES (32, 55, -1);
INSERT INTO collapse VALUES (32, 98, 1);

SELECT * FROM collapse FINAL
┌─user_id─┬─views─┬─sign─┐
│ 32 │ 98 │ 1 │
└─────────┴───────┴──────┘

Mux Experience
with ClickHouse

Mux Data Overview

Video Views

Data Architecture

● Full Video Views
● Billions of Views/Month
● 500M Views/Customer
● 100K Beacons/Second
● Raw Data Queries

Historical Metrics Clickhouse

Citus

Fancy Citus Super Fancy Citus

2016
2019

Mux Before Clickhouse

● Filter Depth
● Exclusion Filters
● Dynamic time aggregation
● Scale

Unlocked Data Features

Unlocked Performance

Cost Benefits

● No Aggregation (CPU + Disk)
● Columnar compression

○ Low Cardinality
○ ⅓ Disk Size

● Smaller machines
● Halved costs while volume doubled

Challenges

● Clickhouse != Postgres
● View Updates
● Individual record lookup

Updates

CREATE TABLE views (
 view_id UUID,
 customer_id UUID,
 user_id UUID,
 view_time DateTime,
 ...
 rebuffer_count: UInt64,
 --- other metrics

 operating_system: Nullable(String),
 --- other filter dimensions

)
ReplicatedCollapsingMergeTree(...,Sign)
PARTITION BY toYYYYMMDD(view_time)
ORDER BY (customer_id, view_time, view_id)

● “Resumed” views
● Low percentage of rows get updated
● FINAL keyword sometimes

○ Yes when listing views
○ No on larger metrics queries
○ Metrics workarounds

■ SUM(metric * Sign) /
SUM(Sign)

● Nightly OPTIMIZE

Record Lookup

SELECT * FROM video_views
WHERE
 view_time IN (
 SELECT view_time FROM user_id_index
 WHERE customer_id=0 AND user_id='mux'
)
 AND customer_id=0 AND user_id='mux'

CREATE MATERIALIZED VIEW
video_views_index_user_id

ON CLUSTER metrics
ENGINE = ReplicatedCollapsingMergeTree(...,
Sign)
PARTITION BY toYYYYMMDD(view_end)
PRIMARY KEY (property_id, user_id)
ORDER BY (property_id, user_id, view_end)
POPULATE AS

SELECT
property_id,
user_id,
view_end,
Sign

FROM video_views

https://mux.com/blog/from-russia-with-love-how-clickhouse-saved-our-data/

https://mux.com/blog/from-russia-with-love-how-clickhouse-saved-our-data/

Nullable
Clickhouse Documentation

● Test it
● We use Nullable extensively
● Minimal Performance Impact

Deployment Details

● K8s
● 4 Clusters/4 Deployments

○ Historical Metrics
■ CH Replication
■ Secondary Cluster
■ 8 Node Clusters

○ Realtime Metrics
■ No Replication
■ Blue/Green Clusters
■ 5 Node Clusters

○ CDN logs
■ No Replication
■ Single Node
■ Increased Kafka retention

○ Raw Data Beacons
■ No Replication
■ 3 Day TTL

● All fronted by chproxy
○ https://github.com/Vertamedia/chproxy
○ Caching
○ User Routing
○ Rate Limiting
○ Prometheus Monitoring

https://github.com/Vertamedia/chproxy

What Next?

● Advanced Alerting
● BI Metrics
● Data Warehousing
● Move “beacon processing” into clickhouse

Wrap-up

Takeaways

● Clickhouse performance feels like magic
● Operational simplicity, especially around scaling
● Clickhouse has become our default for statistic data

Thank you!

We are both
hiring!

Mux:
https://mux.com

Altinity:
https://www.altinity.com

https://mux.com
https://www.altinity.com

