Altinity

Analyzing Billion Row
Datasets with CllckHoys.e-

Alexander Zaltsev : d Ro e#

N
v - -
A t ' n l t www.altinity.com
- infograltinity.com

Robert Hodges - Altinity CEO Alexander Zaitsev - Altinity CTO

30+ years on DBMS plus Expert in data warehouse with
virtualization and security. petabyte-scale deployments.
ClickHouse is database #20. Altinity Founder

Altinity Background

Premier provider of software and services for ClickHouse
Incorporated in UK with distributed team in US/Canada/Europe
Main US/Europe sponsor of ClickHouse community

Offerings:

o Enterprise support for ClickHouse and ecosystem projects
o Software (Kubernetes, cluster manager, tools & utilities)

o POCs/Training

ClickHouse
Overview

ClickHouse is a powerful data warehouse that handles

Many use Ccases

Understands SQL

Runs on bare metal to cloud

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

Is WAY fast!

Tables are split into indexed, sorted parts for fast queries

P -t Index Columns Indexed
ar y
Table
Y~ Sorted
Index Columns \Compressed
Part I

Part

If one server is not enough -- ClickHouse can scale out easily

ClickHouse
tripdata_dist tripdata
(Distributed) f (MergeTable)
SELECT ... /
FROM ClickHouse
tripdata dist | >
< | tripdata_dist tripdata
Result Set ‘ !
. ClickHouse \

tripdata_dist tripdata

Getting Started:
Data Loading

Installation: Use packages on Linux host

$ sudo apt -y install clickhouse-client=19.6.2 \
clickhouse-server=19.6.2 \
clickhouse-common-static=19.6.2

$ sudo systemctl start clickhouse-server

$ clickhouse-client
11e99303c78e :) select wversion()

—version () —
| 19.6.2.11 |
| |

Decision tree for ClickHouse basic schema design

Use scalar
columns with
specific type

Use array
columns to Use scalar Select
store key columns with ———9 partition key
value pairs String type and sort order

Tabular data structure typically gives the best results

CREATE TABLE tripdata (
"pickup date’ Date DEFAULT
toDate (tpep pickup datetime),
"id® UInteé4,
"vendor id String,
"tpep pickup datetime DateTime,
"tpep dropoff datetime DateTime,

) ENGINE = MergeTree
PARTITION BY toYYYYMM(pickup date)

Scalar columns

Specific datatypes

Time-based partition key

Sort key to index parts

ORDER BY (pickup location id, dropoff location id, vendor id)

Use clickhouse-client to load data quickly from files

CSV Input Data

"Pickup date","id","vendor id","tpep pickup datetime"..
"2016-01-02",0,"1","2016-01-02 04:03:29","2016-01-02..
"2016-01-29",0,"1","2016-01-29 12:00:51","2016-01-29..
"2016-01-09",0,"1","2016-01-09 17:22:05","2016-01-09..

Reading CSV Input with Headers

clickhouse-client --database=nyc taxi rides --query='INSERT
INTO tripdata FORMAT CSVWithNames' < data.csv

Reading Gzipped CSV Input with Headers

gzip -d -c | clickhouse-client --database=nyc_ taxi rides
--query="'INSERT INTO tripdata FORMAT CSVWithNames'

Wouldn't it be nice to run in parallel over a lot of input files?

Altinity Datasets project does exactly that!

e Dump existing schema definitions and data to files
e Load files back into a database

e Data dump/load commands run in parallel

See https://qgithub.com/Altinity/altinity-datasets

https://github.com/Altinity/altinity-datasets

How long does it take to load 1.3B rows?

$ time ad-cli dataset load nyc taxi rides --repo path=/datal/sample-data
Creating database if it does not exist: nyc timed
Executing DDL: /datal/sample-data/nyc taxi rides/ddl/taxi zones.sql

Loading data: table=tripdata, file=data-200901.csv.gz

Operation summary: succeeded=193, failed=0

real 11m4.827s
user 63m32.854s
sys 2m41 .235s

(Amazon md5.2xlarge: Xeon(R) Platinum 8175M, 8vCPU, 30GB RAM, NVMe SSD)

Do we really have 1B+ table?

:) select count() from tripdata;

SELECT count ()
FROM tripdata

————count () —
| 1310903963 |
| |

1 rows in set. Elapsed: 0.324 sec. Processed 1.31 billion rows, 1.31 GB (4.05
billion rows/s., 4.05 GB/s.)

1,310,903,963/11m4s = 1,974,253 rows/sec!!!

Getting Started
on Queries

Let’s try to predict maximum performance

SELECT avg (number)
FROM
(
SELECT number
FROM system.numbers

LIMIT 1310903963 system.numbers - internal
) generator for testing
—avg (number) —
| 655451981 |

1 rows in set. Elapsed: 3.420 sec. Processed 1.31 billion rows, 10.49 GB (383.29
million rows/s., 3.07 GB/s.)

Now we try with real data

SELECT avg (passenger count)
FROM tripdata

—avg (passenger count)—

| 1.6817462943317076 |
| |

1 rows in set. Elapsed: ?

Guess how fast?

Now we try with the real data

SELECT avg (passenger count)
FROM tripdata

—avg (passenger count)—

| 1.6817462943317076 |
| |

1 rows in set. Elapsed: 1.084 sec. Processed 1.31 billion rows, 1.31 GB (1.21
billion rows/s., 1.21 GB/s.)

Even faster!!l!
Data type and cardinality matters

What if we add a filter

SELECT avg (passenger count)
FROM tripdata
WHERE toYear (pickup date) = 2016

—avg (passenger_ count)—

| 1.6571129913837774 |
| |

1 rows in set. Elapsed: 0.162 sec. Processed 131.17 million rows, 393.50 MB (811.05
million rows/s., 2.43 GB/s.)

What if we add a group by

SELECT
pickup location id AS location id,
avg (passenger_ count),
count ()
FROM tripdata
WHERE toYear (pickup date) = 2016
GROUP BY location id LIMIT 10

10 rows in set. Elapsed: 0.251 sec. Processed 131.17 million rows, 655.83 MB
(522.62 million rows/s., 2.61 GB/s.)

What if we add a join

SELECT
zone,
avg (passenger_count),
count ()
FROM tripdata
INNER JOIN taxi zones ON taxi_ zones.location_id = pickup location_id
WHERE toYear (pickup date) = 2016
GROUP BY zone
LIMIT 10

10 rows in set. Elapsed: 0.803 sec. Processed 131.17 million rows, 655.83 MB (163.29
million rows/s., 816.44 MB/s.)

Yes, ClickHouse is FAST!

This is the first time a free, CPU-based database has managed to
out-perform a GPU-based database in my benchmarks. That GPU
database has since undergone two revisions but nonetheless, the

performance ClickHouse has found on a single node is very
Mark Litwintschik impressive.

https://tech.marksblogg.com/benchmarks.html

Optimization
Techniques

How to make ClickHouse
even faster

You can optimize

Server settings
Schema (index, dictionaries, arrays, special table engines)
Column storage (encoding, compression)

Queries

Settings

SELECT avg (passenger count) Default is half of

FROM tripdata - -

SETTINGS max_threads = 1 available cores
good enough to start

1 rows in set. Elapsed: 4.855 sec. Processed 1.31 billion rows, 1.31 GB
(270.04 million rows/s., 270.04 MB/s.)

SELECT avg (passenger_ count)
FROM tripdata
SETTINGS max threads = 8

1 rows in set. Elapsed: 1.092 sec. Processed 1.31 billion rows, 1.31 GB (1.20
billion rows/s., 1.20 GB/s.)

Data Types matter!

Q1 TIME (SEC) [m] 5 2 [m]
3 ; (i

EEE S

) [=] 7

https://www.percona.com/blog/2019/02/15/clickhouse-performance-uint32-vs-uint64-vs-float32-vs-float64/

https://www.percona.com/blog/2019/02/15/clickhouse-performance-uint32-vs-uint64-vs-float32-vs-float64/

Schema optimization

SELECT
zone,
avg (passenger_count),
count ()
FROM tripdata
INNER JOIN taxi_ zones ON taxi_ zones.location_ id =
pickup location_id
WHERE toYear (pickup date) = 2016
GROUP BY zone
LIMIT 10

10 rows in set. Elapsed: 0.803 sec. Processed 131.17 million rows,
655.83 MB (163.29 million rows/s., 816.44 MB/s.)

Can we do it any faster?

We can optimize JOIN

SELECT o Qa .
zone, Subquery minimizes data
sum(pc_sum) / sum(pc_cnt) AS pc_avg, scanned in parallel; joins
EL(ECHCRE) on GROUP BY results

FROM

(

SELECT

pickup_location_id,

sum (passenger_ count) AS pc_sum,

count () AS pc_cnt .
FROM tripdata Can we do it any faster?
WHERE toYear (pickup _date) = 2016
GROUP BY pickup location_id

)

INNER JOIN taxi_ zones ON taxi_ zones.location_id = pickup location_id
GROUP BY zone LIMIT 10

10 rows in set. Elapsed: 0.248 sec. Processed 131.17 million rows, 655.83
MB (529.19 million rows/s., 2.65 GB/s.)

MaterializedView with SummingMergeTree

CREATE MATERIALIZED VIEW tripdata mv

ENGINE = SummingMergeTree MaterializedView
PARTITION BY toYYYYMM(pickup date)

ORDER BY (pickup location_id, dropoff location_id, vendor_id) AS W.OrkS as an INSERT
SELECT trigger

pickup_ date,

vendor_id,

pickup location_id,

dropoff location_id,

sum (passenger_count) AS passenger_ count sum,
sum(trip distance) AS trip distance_sum,
sum(fare amount) AS fare amount_ sum,
sum(tip_amount) AS tip amount sum,
sum(tolls_amount) AS tolls_ amount_ sum,

sum(total_ amount) AS total_amount_sum, Summln.gMergeTree
count () AS trips count automaﬂca"y
FROM tripdata .
e aggregates data in
pickup date, the background

vendor_id,
pickup_location_id,
dropoff location_id

MaterializedView with SummingMergeTree

INSERT INTO tripdata mv SELECT
pickup_date,
vendor_id,
pickup location_id,
dropoff location_id,
passenger_count,
trip distance,
fare_amount,
tip amount,
tolls_amount,
total_ amount,

1
FROM tripdata;

Ok.

Note, no group by!

SummingMergeTree
automatically
aggregates data in
the background

0 rows in set. Elapsed: 303.664 sec. Processed 1.31 billion rows,

50.57 GB (4.32 million rows/s., 166.54 MB/s.)

MaterializedView with SummingMergeTree

SELECT
count (),
sum(trips_count)
FROM tripdata mv

——count () ——sum(trips count)—

| 20742525 | 1310903963 |
|]]

1 rows in set. Elapsed: 0.029 sec. Processed 20.74 million rows, 165.94 MB (712.56 million
rows/s., 5.70 GB/s.)

SELECT
zone,
sum(passenger_count_sum)/sum(trips_count),
sum (trips_count)
FROM tripdata mv
INNER JOIN taxi_ zones ON taxi_ zones.location_id = pickup location_id
WHERE toYear (pickup date) = 2016
GROUP BY zone LIMIT 10

10 rows in set. Elapsed: 0.036 sec. Processed 3.23 million rows, 64.57 MB (89.14 million
rows/s., 1.78 GB/s.)

Realtime Aggreation with Materialized Views

‘ Summing
MergeTree

‘ Summing
MergeTree

‘ Summing
MergeTree

One more example at:
https://www.altinity.com/blog/clickhouse-continues-to-crush-time-series

e

Column storage optimizations

Compression
LowCardinality

Column encodings

LowCardinality example. Another 1B rows.

:) create table test lc (

a String, a_lc LowCardinality(String) DEFAULT a) Engine = MergeTree
PARTITION BY tuple() ORDER BY tuple() ;

:) INSERT INTO test lc (a) SELECT
concat ('openconfig-interfaces:interfaces/interface/subinterfaces/subinter

face/state/index', toString(rand() % 1000))

FROM system.numbers LIMIT 1000000000;

—table r—hame——type r—compressed——uncompressed—

| test 1c | a | String | 4663631515 | 84889975226 |

| test 1lc | a_lc | LowCardinality(String) | 2010472937 | 2002717299 |

LowCardinality
encodes column
with a dictionary
encoding

Storage is
dramatically
reduced

LowCardinality example. Another 1B rows

:) select a a, count(*) from test lc group by a order by count(*) desc limit 10;

r—count () —

—a
| openconfig-interfaces:interfaces/interface/subinterfaces/subinterface/state/index396 | 1002761 |

| openconfig-interfaces:interfaces/interface/subinterfaces/subinterface/state/index5 | 1002203 |

10 rows in set. Elapsed: 11.627 sec. Processed 1.00 billion rows, 92.89 GB (86.00 million

rows/s., 7.99 GB/s.)

:) select a_lc a, count(*) from test lc group by a order by count(*) desc limit 10;

10 rows in set. Elapsed: 1.569 sec. Processed 1.00 billion rows, 3.42 GB (637.50 million

rows/s., 2.18 GB/s.)

Array example. Another 1B rows

create table test array (Arrays efficiently model 1-to-N
s String, relationship
a Array (LowCardinality(String)) default arrayDistinct(splitByChar(',',6 s))

) Engine = MergeTree PARTITION BY tuple() ORDER BY tuple(); Note the use of complex default

expression
INSERT INTO test array (s)

WITH ['Percona', 'Live', 'Altinity', 'ClickHouse', 'MySQL', 'Oracle', 'Austin',6 'Texas',
'PostgreSQL', 'MongoDB'] AS keywords
SELECT concat (keywords|[((rand(1) % 10) + 1)1, ',',

keywords[((rand(2) % 10) + 1)1, ',',

keywords[((rand(3) % 10) + 1)1, ',',

keywords[((rand(4) % 10) + 1)])

FROM system.numbers LIMIT 1000000000

Array example. Another 1B rows

Array efficiently models 1-to-N

Data sample: relationship
—s a
Texas,ClickHouse, Live ,MySQL ['Texas', 'ClickHouse', 'Live', 'MySQL']

| | |
| Texas,Oracle,Altinity,PostgreSQL | ['Texas', 'PostgreSQL', 'Oracle','Altinity'] |
| Percona,MySQL,MySQL,Austin | ['MySQL','Percona', 'Austin']

| PostgreSQL,Austin, PostgreSQL, Percona | ['PostgreSQL', 'Percona’', 'Austin’] |
| Altinity,Percona,Percona,Percona | ['Altinity', 'Percona'] |

Storage:

—table r—hame——type I comp— uncomp—;

| test array | s | String | 11239860686 | 31200058000 |

| test array | a | Array(LowCardinality(String)) | 4275679420 | 11440948123 |
| | | |

Array example. Another 1B rows

:) select count() from test_array where s like '3%ClickHouse%';

——count () —

| 343877409 |
|]

1l rows in set. Elapsed: 7.363 sec. Processed 1.00 billion rows, 39.20 GB (135.81 million
rows/s., 5.32 GB/s.)
:) select count() from test array where has(a,'ClickHouse') ;

——count () —

| 343877409 |
| |

1 rows in set. Elapsed: 8.428 sec. Processed 1.00 billion rows, 11.44 GB (118.66 million

rows/s., 1.36 GB/s.)

Well, ‘like’ is very efficient, but we reduced 1/0 a lot.
* has() will be optimized by dev team

ClickHouse is fast,
but it is always possible to make
it even faster!

ClickHouse
Integrations

...And a nice set of supporting ecosystem tools

Client libraries: JDBC, ODBC, Python, Golang, ...

Kafka table engine to ingest from Kafka queues
Visualization tools: Grafana, Tableau, Tabix, SuperSet

Data science stack integration: Pandas, Jupyter Notebooks

Kubernetes ClickHouse operator

Integrations with MySQL

MySQL External Dictionaries (pull data from MySQL to CH)
MySQL Table Engine and Table Function (query/insert)
Binary Log Replication

ProxySQL supports ClickHouse

ClickHouse supports MySQL wire protocol (in June release)

..and with PostgreSQL

ODBC External Dictionaries (pull data from PostgreSQL to CH)
ODBC Table Engine and Table Function (query/insert)
Logical Replication: https://github.com/mkabilov/pg2ch

Foreign Data Wrapper:
https://github.com/Percona-Lab/clickhousedb_fdw

ClickHouse Operator - an easy way to manage ClickHouse
data warehouses in Kubernetes

o

. :

4, vt > ClickHouse
[=]

Operator
Monitﬁ

Healthchecks \E u E E

o~ T

E-3 e s B R

<:> g — e, - S-S
.-l*'--

= —

ClickHouse cluster resources
Kubernetes API

ClickHouselnstallation
YAML file

\/————

https://github.com/Altinity/clickhouse-operator

Where to get more information

e ClickHouse Docs: https://clickhouse.yandex/docs/en/

e Altinity Blog: https://www.altinity.com/blog

e Meetups and presentations: hitps://www.altinity.com/presentations
o 7 May -- Limassol, Cyprus ClickHouse Meetup
o 28-30 May -- Austin, TX Percona Live 2019

4 June -- San Francisco ClickHouse Meetup

8 June -- Beijing ClickHouse Meetup

13 August -- Silicon Valley ClickHouse Meetup

September - ClickHouse Paris Meetup

O O O O

https://clickhouse.yandex/docs/en/
https://www.altinity.com/blog
https://www.altinity.com/presentations

Contacts:

Questions?

Visit us at;

Thank you!

Read Our Blog:

mailto:info@altinity.com
https://www.altinity.com
https://www.altinity.com/blog

