

Presenter Bios

Yoann Buch - Instana

Software Engineer,
ex-Microsoft & creator

of findtheflow.io

Robert Hodges - Altinity

CEO with 30+ years
on DBMS ClickHouse

is DBMS #20

Marcel Birkner - Instana

Site Reliability Engineer,
10+ years software

engineering experience

http://findtheflow.io/

Company Intros

www.altinity.com

Leading software and services
provider for ClickHouse

Major committer and community
sponsor in US and Western Europe

www.instana.com

Instana makes life easier for DevOps
through Application Performance
Monitoring (APM) that manages
application behavior in real-time

https://www.instana.com/

Instana and
ClickHouse What is Instana?

How do we use ClickHouse?

Automatic Monitoring for
Dynamic Applications

Automate Discovery of all Technology

● Instana Agent:
○ One Agent Deployed Once
○ Continuous Automatic Discovery of Technology
○ Automatic Metric Collection at 1 Second

Granularity
○ Automatic Tracing

Continuous real time inventory of all components

Automatic Tracing
Instana Delivers Automatic Code Instrumentation

Keep Developers Writing Functionality, not Instrumentation

Fully automatic

• Java
• Scala
• Python
• PHP
• .NET

Library inclusion

• NodeJS
• Golang
• Ruby
• Crystal

User Request

Automatic Distributed Tracing

Dynamic Graph

Instana’s internal model that
continuously correlates

dependencies

Data Collection
● Metrics - Qualitative attributes of the technology that indicate performance.

○ e.g, Process CPU, Service latency, Web Page load time, etc.

● Events - Changes: Initial discovery and state changes, Built-In Events based
on failing health rules and Custom Events based on the thresholds.
○ e.g., Host offline, Docker container offline, JVM GC Suspension High, Service Latency Slow, etc.

● Configuration - Catalogs current settings and states in order to keep track of
any configuration change

● Traces - Represent transactions and are captured based upon the
programming language platform. Traces are made up of one or more Calls
○ Java, Scala, .Net, PHP, Python, Node.js, Ruby, Go, others via SDK

● EUM - tracing web browser calls to backend services

What do we use
ClickHouse for? Application & End-User-Monitoring Data

Traces / EUM Beacons

Dashboards / Dependency Map

Public Demo: "Applications" https://play-with.instana.io/#/applications

● we store trace data in ClickHouse
● from ClickHouse data we generate different types of

dashboards for our monitoring platform
● ClickHouse helps us process millions of records with a

"Mean Latency" of 400ms in production

https://play-with.instana.io/#/applications

Application Data - Analytics

Public Demo: "Analytics" https://play-with.instana.io/#/analyze

Customers can slice-and-dice the calls data
stored in ClickHouse to analyse
performance problems and errors

https://play-with.instana.io/#/analyze

Application Data - Traces

https://play-with.instana.io/#/websiteMonitoring/website;websiteId=eXcbQMOqTle1Kpq6ApRuHw/summary

... all the way down to traces. The traces
are made up by separate calls and contain
errors, stacktraces, sql statements, ...

https://play-with.instana.io/#/websiteMonitoring/website;websiteId=eXcbQMOqTle1Kpq6ApRuHw/summary

End-User-Monitoring

https://play-with.instana.io/#/websiteMonitoring/website;websiteId=eXcbQMOqTle1Kpq6ApRuHw/summary

We also store data from EUM beacons in
ClickHouse to generate dashboards

https://play-with.instana.io/#/websiteMonitoring/website;websiteId=eXcbQMOqTle1Kpq6ApRuHw/summary

Operating
ClickHouse We started running ClickHouse in

production two years ago

in production

SaaS Cluster - ClickHouse
● 1 cluster per SaaS region

○ 4 SaaS regions US / EU
○ MultiCloud: AWS & GCP

● cluster spec
○ 20 nodes

■ r5.8xlarge
■ m5.12xlarge

○ 10 shards
○ replica cross AZ
○ Before JBOD + schema changes

■ 1 x 12 TB volume per node
■ 180 TB in cluster at peak

○ With JBOD + schema changes
■ 2 x 2.5 TB volumes
■ 70 TB

Statistics

Ingress per region

● Spans: 660k / sec
● Beacons: 120k / sec

Total: 10 TB ingress / day

Tracing Data Ingress

EUM Data Ingress

ClickHouse within our Architecture

TU = tenant unit

Batching Query throttling

How do we monitor our ClickHouse clusters?
● Infrastructure metrics

○ Host, CPU, Memory, Disks IO, Networking

● ClickHouse host & cluster dashboards
○ Merges, Inserts, Queries, Replication

● ZooKeeper dashboards
○ JVM: GC performance, Suspension, Heap

● Reader / Writer Components
○ JVM: DropWizard Apps

built-in and custom SLI / SLO

We use Instana to monitor ClickHouse / EYODF

Monitoring ClickHouse - 1
1sec host metrics

Upstream / Downstream services

ClickHouse host dashboards

Monitoring ClickHouse - 2

Cluster dashboard

> 800 000 000 000 Rows

Monitoring ZooKeeper

JVM metrics
(Heap, GC, Suspension, ...)

Host metrics (CPU, IO)

Infrastructure - Lessons Learned
● Initially we had one database with 10 tables per tenant unit

○ Problems: thousands of tables, too many parts, running schema migrations got complicated
○ Solution: we migrated everything to a shared database with 10 shared tables

● Started with ZooKeeper cluster similar to our Kafka setup
○ Problem: performance was not sufficient
○ Solution: we scaled them up (IO, CPU, and memory)

● Approached disk limit in AWS
○ Problem: one single data volume per CH node (16 TB is the max for AWS volumes)
○ Solution: we moved to multi-volume (JBOD) => 2 volumes per node
○ https://www.instana.com/blog/migrating-live-to-a-multi-disk-clickhouse-setup-to-increase-operability-and-decrease-cost/

● Regularly upgrade ClickHouse to latest stable version announced by Altinity as
soon as possible to benefit from new features

https://www.instana.com/blog/migrating-live-to-a-multi-disk-clickhouse-setup-to-increase-operability-and-decrease-cost/

ClickHouse
query
performance How to detect failed & slow

queries, and where they come
from

Detect query failures - Step 1
Dashboard representing the
ClickHouse cluster,
populated from tracing data

Drill down to analyze errors

Detect query failures - Step 2

All of the queries in
error (no sampling)

Detect query failures - Step 3
Trace context to find out what is
making this erroneous query

SQL & error
message

Detect slow queries - Step 1

Grouping calls by API entry
points, then sort by latency
percentiles or sum

Detect slow queries - Step 2

Slowest calls

SQL statement, timing info, and
trace context

Tracing inside the ClickHouse cluster

The query is as fast as the
slowest shard

Tracing includes the queries
distributed over the shards

SQL &
query settings

Engineering - Lessons learned
● System tables are great for understanding/monitoring

○ enable writing to query_log and part_log
○ graph metrics over time
○ build alerting on top of metrics

● Context is key
○ where queries come from: service, website, tenant, user, etc.

● A handful of tenants/users can easily eat up most of the resources
● Improve query performance through continuous monitoring

○ query optimization, bigger hardware, more shards, more replicas, materialized views,
compression (zstd, Low Cardinality), data skipping indices, sampling, etc.

Wrap-up

Takeaways

● ClickHouse is a reliable, scalable and performant column-based datastore
○ its performance still amazes us
○ we are very happy users :-)

● Good monitoring helped us with the steep learning curve
○ no prior knowledge of ClickHouse in Engineering and SRE team

● Infrastructure monitoring alone was not enough for us
○ Context and distributed tracing gives us end-to-end visibility

https://play-with.instana.io

Thank you!

We are hiring!

Instana:
https://www.instana.com

Altinity:
https://www.altinity.com

https://www.instana.com/
https://www.altinity.com

