
Fun with ClickHouse
Window Functions

Robert Hodges and Vitaliy Zakaznikov @ Altinity

1

Presenter Bios and Altinity Introduction

The #1 enterprise ClickHouse provider. Now offering Altinity.Cloud

Major committer and community sponsor for ClickHouse in US/EU

Robert Hodges - CEO

30+ years on DBMS plus
virtualization and security.
ClickHouse is DBMS #20

Vitaliy Zakaznikov - QA Manager

13+ years testing hardware and
software; author of TestFlows

open source testing framework

https://altinity.com/cloud-database/

ClickHouse: a great SQL data warehouse
Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

 a b c d

 a b c d

 a b c d

 a b c d

And it’s really fast!

3

Using the Altinity.Cloud public endpoint

4

https://github.demo.trial.altinity.cloud:8443/play

User
“demo”

Password
“demo”

clickhouse-client --host=github.demo.trial.altinity.cloud
-s --user=demo --password

https://github.demo.trial.altinity.cloud:8443/play

What are
Window

Functions?

5

Let’s start with a simple query...
SELECT FlightDate,
 count() AS Flights,
 sum(Cancelled) AS Sum_Cancelled
FROM ontime
WHERE toYYYYMM(FlightDate) = 201901
GROUP BY FlightDate
ORDER BY FlightDate

FlightDate	Flights	Sum_Cancelled
2019-01-01| 18009| 141|
2019-01-02| 20384| 173|

6

Cancelled flights for
Jan 2019

7

SQL queries work like “cubes”

7

FlightDate

Cancelled

0 --

1 --

 1/01 1/02 1/03 1/04 1/05 1/06 1/07 1/07 . ..

16807 Flights
129 Cancelled

Dimension

Metrics
(count, sum)

Dimension

Carrier

Fli
gh

tN
um

TailN
um

(Other dimensions)

...But what happens if we want to...

8

Rank particular days by
number of cancelled flights?

Print cumulative cancellations
for each month?

Print trailing 7-day average
cancellations?

8

How can I do that in SQL??

This is a job for window functions!

9

Set session variable

clickhouse101 :) SET allow_experimental_window_functions = 1
SET allow_experimental_window_functions = 1
Query id: f8aec38c-7f31-4544-96df-bcdb4034f0ac
Ok.

<yandex>
 <profiles>
 <default>
 <allow_experimental_window_functions>1</allow_...tions>
 . . .
 </default></profiles></yandex>

But first we need to enable them...

Set in user profile

Window functions add a new option to SQL
SELECT FlightDate, count() AS Flights,
sum(Cancelled) AS Daily_Cancelled,
avg(Daily_Cancelled)
 OVER (ROWS BETWEEN 6 PRECEDING AND CURRENT ROW)
 AS Avg_Cancelled_7
FROM ontime_ref
WHERE Year = 2019 GROUP BY FlightDate ORDER BY FlightDate

FlightDate	Flights	Daily_Cancelled	Avg_Cancelled_7
. . .
2019-01-30| 19102| 2145| 805.5714285714286|
2019-01-31| 19962| 1775| 999.0|
2019-02-01| 20045| 459|1037.2857142857142|

10

Window function!

How window functions work conceptually

SELECT FlightDate,
count() AS Flights,
sum(Cancelled) AS Daily_Cancelled,
avg(Daily_Cancelled)
 OVER (ROWS BETWEEN 6 PRECEDING AND CURRENT ROW)
 AS Avg_Cancelled_7
FROM ontime_ref
WHERE Year = 2019
GROUP BY FlightDate
ORDER BY FlightDate

11

Operates on the
computed aggregate

Computes average
within a window
“frame” of 7 rows

Result is another
output column

Window
Functions -- The

gory details

21.3 (LTS) - First experimental
support

21.8 - Pre-release experimental
feature (should be enabled by
default soon)

12

How do window functions work for users?

13

Why do we need “gory details” anyway?

14

● Empty OVER clause means that there is
only one window that includes all the
result rows

● When no ORDER BY clause is specified
then all rows are the peers of the
current row

● The default frame is RANGE BETWEEN
UNBOUNDED PRECEDING AND
CURRENT ROW

SELECT
 number,
 sum(number) OVER ()
FROM numbers(1, 5)

┌─number─┬─sum(number) OVER ()─┐
│ 1 │ 15 │
│ 2 │ 15 │
│ 3 │ 15 │
│ 4 │ 15 │
│ 5 │ 15 │
└────────┴─────────────────────┘

Window function behavior is not obvious!

What can be a window function?

15

Any aggregate function

● min
● max
● sum
● avg
● etc.

SELECT number, min(number)
OVER () FROM numbers(1,5)

Window native function

● row_number
● first_value
● last_value
● rank
● dense_rank
● leadInFrame
● lagInFrame

SELECT number, rank() OVER (ORDER BY
number) FROM numbers(1,5)

What is an OVER clause?

16

● Can be empty

OVER defines the window specification

● Can contain window
specification

SELECT number,
 sum(number) OVER ()
FROM numbers(1,5)

SELECT number,
 sum(number) OVER (PARTITION BY number)
FROM numbers(1,5)

● Can refer to a named
window

SELECT number,
 sum(number) OVER w
FROM numbers(1,5)
WINDOW w AS (PARTITION BY number)

What do window specifications look like?

17

● PARTITION BY clause
Defines window partition

Window Specification clause
[partition_clause] [order_clause] [frame_clause]

● ORDER BY clause
Orders rows within a frame

SELECT number,
 sum(number) OVER (PARTITION BY number % 2)
FROM numbers(1,5)

SELECT number,
 sum(number) OVER (ORDER BY number)
FROM numbers(1,5)

● FRAME clause
Defines frame within a
window partition

SELECT number,
 sum(number) OVER (ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW)
FROM numbers(1,5)

What kind of frames are there?

18

● ROWS frame
Defines a frame with the range in
terms of relationship of rows to the
current row number

SELECT
 number,
 sum(number) OVER (ORDER BY
number ROWS 1 PRECEDING) AS sum
FROM numbers(1, 3)

┌─number─┬─sum─┐
│ 1 │ 1 │
│ 2 │ 3 │
│ 3 │ 5 │
└────────┴─────┘

FRAME clause

● RANGE frame
Defines a frame with the range in terms of row
values from the current row value.

SELECT
 number,
 sum(number) OVER (ORDER BY number RANGE
1 PRECEDING) AS sum
FROM values('number Int8', 1, 2, 2, 4)

┌─number─┬─sum─┐
│ 1 │ 1 │
│ 2 │ 5 │
│ 2 │ 5 │
│ 4 │ 4 │
└────────┴─────┘

What are current rows peers?

19

● With ORDER BY clause

SELECT
 number,
 sum(number) OVER (ORDER BY number)
AS sum
FROM values('number Int8', 1, 2, 2, 3,
4, 5)
┌─number─┬─sum─┐
│ 1 │ 1 │
│ 2 │ 5 │
│ 2 │ 5 │
│ 3 │ 8 │
│ 4 │ 12 │
│ 5 │ 17 │
└────────┴─────┘

CURRENT ROW Peers
Are rows that fall into the same sort bucket and applies only to RANGE frame.

● No ORDER BY clause

SELECT
 number,
 sum(number) OVER () AS sum
FROM values('number Int8', 1, 2, 2, 3,
4, 5)

┌─number─┬─sum─┐
│ 1 │ 17 │
│ 2 │ 17 │
│ 2 │ 17 │
│ 3 │ 17 │
│ 4 │ 17 │
│ 5 │ 17 │
└────────┴─────┘

How do we define the extent of the frame?

20

● frame START
Defines start of the frame with the end
being set implicitly to current row (for
both ROWS and RANGE frame)

SELECT number,sum(number) OVER
(ORDER BY number ROWS 1
PRECEDING) AS sum FROM
numbers(1,5)

is actually

SELECT
 number,
 sum(number) OVER (ORDER BY
number ASC ROWS BETWEEN 1
PRECEDING AND CURRENT ROW) AS sum
FROM numbers(1, 5)

FRAME extent clause
● frame BETWEEN

Defines a frame with start and end specified explicitly

SELECT number,sum(number) OVER (ORDER BY
number ROWS BETWEEN 1 PRECEDING AND 1
FOLLOWING) AS sum FROM numbers(1,5)

is actually the same

SELECT
 number,
 sum(number) OVER (ORDER BY number ASC
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
AS sum
FROM numbers(1, 5)

More on frame extents!

21

● CURRENT ROW
Current row as the frame slides through the window

● UNBOUNDED PRECEDING
All rows before current row, if ROWS frame,
or first row’s value in window partition, if RANGE
frame

● UNBOUNDED FOLLOWING
All rows after current row, if ROWS frame,
or last row’s value in window partition if RANGE frame

FRAME extent clause

● expr PRECEDING
Offset in rows before current row, if ROWS frame,
or current row value minus expr, if RANGE frame

● expr FOLLOWING
Offset in rows before current row, if ROWS frame,
or current row value plus expr, if RANGE frame

Frame START and frame END offsets can be specified as

How do window functions work internally?

22

Apply window
functions

Fully
Aggregate,

Sort

Scan,
Partially

Aggregate

Scan,
Partially

Aggregate

Scan,
Partially

Aggregate
Data

Data

Data

Result

Sequential Sequential

Parallel

Using Window
functions in

practice

21.3 (LTS) - First experimental
support

21.8 - Pre-release experimental
feature

23

Computing cumulative monthly cancellations
SELECT FlightDate, count() AS Flights,
sum(Cancelled) AS Daily_Cancelled,
sum(Daily_Cancelled)
 OVER (PARTITION BY toStartOfMonth(FlightDate)
 ORDER BY FlightDate)
 AS Cumul_Cancelled
FROM ontime
WHERE Year = 2019 GROUP BY FlightDate ORDER BY FlightDate

FlightDate	Flights	Daily_Cancelled	Cumul_Cancelled
2019-01-01| 18009| 141| 141|
2019-01-02| 20384| 173| 314|
. . .

24

Group by flight month

Order by date of light

Rank cancellations by week
SELECT FlightDate, count() AS Flights,
sum(Cancelled) AS Daily_Cancelled,
rank() OVER
 (PARTITION BY toStartOfWeek(FlightDate)
 ORDER BY Daily_Cancelled DESC) as Weekly_Rank
FROM ontime
WHERE Year = 2019 GROUP BY FlightDate ORDER BY FlightDate

FlightDate	Flights	Daily_Cancelled	Weekly_Rank
2019-01-01| 18009| 141| 2|
2019-01-02| 20384| 173| 1|
2019-01-03| 19522| 134| 3|

25

Group by week

Multiple ranks for aircraft flights
SELECT TailNum, any(Carrier) AS Carrier, count() Flights,
rank() OVER (ORDER BY Flights DESC) as Overall_Rank,
rank() OVER (PARTITION BY Carrier ORDER BY Flights DESC) as
Carrier_Rank
FROM ontime
WHERE toYYYYMM(FlightDate) = 201901
GROUP BY TailNum ORDER BY Flights DESC

TailNum	Carrier	Flights	Overall_Rank	Carrier_Rank
 |OH | 2543| 1| 1|
N488HA |HA | 361| 2| 1|
N481HA |HA | 348| 3| 2|

26

Reuse window definitions
SELECT FlightDate, count() AS Flights,
sum(Cancelled) AS Daily_Cancelled,
min(Daily_Cancelled) OVER 7_day as Min_Cancelled_7,
avg(Daily_Cancelled) OVER 7_day as Avg_Cancelled_7,
max(Daily_Cancelled) OVER 7_day as Max_Cancelled_7
FROM ontime WHERE Year = 2019
GROUP BY FlightDate WINDOW 7_day AS (ROWS BETWEEN 6 PRECEDING
AND CURRENT ROW) ORDER BY FlightDate

FlightDate|Flights|Daily_Cancelled|Min_Cancelled_7|...
----------|-------|---------------|---------------|...
2019-01-01| 18009| 141| 141|...
2019-01-02| 20384| 173| 141|...

27

Are window functions the only way?

28

“Definitely not!”

Rank cancellations by week using arrays
SELECT FlightDate, Flights, Daily_Cancelled, Weekly_Rank FROM
(
 SELECT
 groupArray(FlightDate) AS FlightDate_Arr,
 groupArray(Flights) AS Flights_Arr,
 groupArray(Daily_Cancelled) AS Daily_Cancelled_Arr,
 arrayEnumerate(Daily_Cancelled_Arr) AS Daily_Cancelled_Indexes,
 arraySort((x, y) -> -y, Daily_Cancelled_Indexes, Daily_Cancelled_Arr) as Rank_Array
 FROM
 (
 SELECT FlightDate, count() AS Flights,
 sum(Cancelled) AS Daily_Cancelled
 FROM ontime
 WHERE Year = 2019 GROUP BY FlightDate ORDER BY FlightDate
)
 GROUP BY toStartOfWeek(FlightDate)
 ORDER BY toStartOfWeek(FlightDate)
)
ARRAY JOIN FlightDate_Arr AS FlightDate, Flights_Arr AS Flights,
 Daily_Cancelled_Arr AS Daily_Cancelled, Rank_Array AS Weekly_Rank
ORDER BY FlightDate

29

Sort indexes by descending
sum of cancelled flights

Unroll arrays again

Roll up values by week

Roadmap and
more

information

30

Not supported or doesn’t work
Some features of window functions that are not supported now or don’t work

● RANGE frame only works for UIntX/IntX, Date and DateTime types and is not
supported for other data types including Nullable

● No INTERVAL support for Date and DateTime types
● No EXCLUDE clause
● No GROUPS frame
● No lag(value, offset) and lag(value, offset) functions but workaround is

documented
● Expressions can’t use window functions
● Can’t use RANGE frame with a named window

31

More information on window functions
● ClickHouse window function docs

● Altinity Blog: ClickHouse Window Functions — Current State of the Art

● Altinity Software Requirements Spec: SRS019 ClickHouse Window Functions

● Alinity Knowledge Base, e.g., cumulative sums

● Blog article on Window Functions by TinyBird.co

32

https://clickhouse.tech/docs/en/sql-reference/window-functions/
https://altinity.com/blog/clickhouse-window-functions-current-state-of-the-art
https://github.com/ClickHouse/ClickHouse/blob/master/tests/testflows/window_functions/requirements/requirements.md
https://kb.altinity.com/
https://kb.altinity.com/altinity-kb-queries-and-syntax/cumulative-unique
https://blog.tinybird.co/2021/03/16/coming-soon-on-clickhouse-window-functions/

33

And special thanks to:

33

Alexander Kuzmenkov @ Yandex -- Implemented window functions

Alexey Milovidov @ Yandex -- ClickHouse lead committer

Altinity QA team -- Testing!

Questions?
Thank you!

Altinity
https://altinity.com

ClickHouse
https://github.com/ClickH

ouse/ClickHouse

Altinity.Cloud
https://altinity.com/cloud-

database/

We are hiring!
34

https://altinity.com
https://github.com/ClickHouse/ClickHouse
https://github.com/ClickHouse/ClickHouse
https://altinity.com/cloud-database/
https://altinity.com/cloud-database/

