
© 2022 Altinity, Inc.

A Day in the Life of
a ClickHouse Query
Intro to ClickHouse Internals
Robert Hodges & Altinity Engineering

110 February 2022

© 2022 Altinity, Inc.

Let’s make some introductions

ClickHouse support and services including Altinity.Cloud
Authors of Altinity Kubernetes Operator for ClickHouse

and other open source projects

Robert Hodges
Database geek with 30+ years

on DBMS systems. Day job:
Altinity CEO

Altinity Engineering
Database geeks with centuries

of experience in DBMS and
applications

2

https://altinity.com/cloud-database/
https://github.com/Altinity/clickhouse-operator

© 2022 Altinity, Inc. © 2021 Altinity, Inc.

Foundations

3

© 2022 Altinity, Inc.

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is a SQL Data Warehouse

It’s a popular engine for
real-time analytics

ClickHouse

Event
Streams

ELT

Object
Storage

Interactive
Graphics

Dashboards

APIs

4

© 2022 Altinity, Inc.

If you understand the engine you can make it faster

ClickHouse has a simple execution model–there’s no magic

Any developer can understand how it works

Knowledge leads to faster and more efficient queries

5

(Another fast
engine!)

© 2022 Altinity, Inc. © 2021 Altinity, Inc.

What happens
when you insert

data?

6

© 2022 Altinity, Inc.

Let’s create a table!

CREATE TABLE IF NOT EXISTS sdata (
 DevId Int32,
 Type String,
 MDate Date,
 MDatetime DateTime,
 Value Float64
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(MDate)
ORDER BY (DevId, MDatetime)

7

Table engine type

How to break data into
parts

How to index and sort
data in each part

Table columns

© 2022 Altinity, Inc.

Let’s now insert some data…

INSERT INTO sdata VALUES
(15, 'TEMP', '2018-01-01', '2018-01-01 23:29:55', 18.0),
(15, 'TEMP', '2018-01-01', '2018-01-01 23:30:56', 18.7)

8

(This is an example. Most people don’t
insert data this way!)

© 2022 Altinity, Inc.

Part in Storage

How does ClickHouse process an insert?

9

INSERT INTO sdata
VALUES
(15, 'TEMP', . . .),
(15, 'TEMP', . . .)

2 rows in set. Elapsed: 0.271 sec.

ClickHouse Server

Parse/Plan

Respond

Load

Part in RAM

Sort rows (table ORDER BY)

© 2022 Altinity, Inc.

Part in Storage

How can we make this more efficient? Parallelize!

10

set max_insert_threads=4

insert into ontime_test
select * from ontime
 where toYear(FlightDate)
 between 2000 and 2001

2 rows in set. Elapsed: 0.271 sec.

ClickHouse Server

Parse/Plan

Respond

Load

Parts in RAM

© 2022 Altinity, Inc.

Parallelism affects speed and memory usage

11

insert into ontime_test
select * from ontime
 where toYear(FlightDate)
 between 2000 and 2001

set max_insert_threads=1
. . .
set max_insert_threads=2
. . .
set max_insert_threads=4

© 2022 Altinity, Inc.

OK, where did those awesome stats come from?

SELECT
 event_time,
 type,
 is_initial_query,
 query_duration_ms / 1000 AS duration,
 read_rows,
 read_bytes,
 result_rows,
 formatReadableSize(memory_usage) AS memory,
 query
FROM system.query_log
WHERE (user = 'default') AND (type = 'QueryFinish')
ORDER BY event_time DESC
LIMIT 50

12

© 2022 Altinity, Inc.

What’s going on down there when you INSERT?

Table
Part

Index Columns

Sparse index finds rows by Carrier,
Origin, FlightDate

Columns sorted
by Carrier, Origin,
FlightDate

Rows in the part
all belong to
same Year

Part
Index Columns

Part 13

© 2022 Altinity, Inc.

Understanding what’s in a MergeTree part
/var/lib/clickhouse/data/airline/ontime

2017-07-01 AA
2017-07-01 EV
2017-07-01 UA
2017-07-02 AA
...

primary.idx

 | | | |

.mrk .bin

20170701_20170731_355_355_2/
(FlightDate, Carrier...) ActualElapsedTime Airline AirlineID...

 | | | |

.mrk .bin
 | | | |

.mrk .bin

Granule Compressed
Block

 Mark

14

© 2022 Altinity, Inc.

Why MergeTree? Because it merges!

Part
Index Columns

Part
Index Columns

Rewritten, Bigger Part
Index Columns

15

Update and delete also rewrite parts

© 2022 Altinity, Inc.

Bigger parts are more efficient!

● Pick a PARTITION BY that gives nice, fat partitions (1-300GB, < 1000
total parts per table)
○ Can’t decide? Partition by month.

● Insert large blocks of data to avoid lots of merges afterwards
○ ClickHouse is fine with tens of millions of rows!

● The simplest way to make blocks bigger is to batch input data
○ Avoid different partition keys in the same block
○ ClickHouse has parameters like max_insert_block_size but defaults are OK
○ Look at logs and actual part sizes to see if you need to do more

16

© 2022 Altinity, Inc.

How can I see how big table parts are?

SELECT
 table, partition, name,
 marks, rows, data_compressed_bytes,
 data_uncompressed_bytes, bytes_on_disk
FROM system.parts
WHERE active
 AND level=0
 AND database = 'default'
 AND table = 'ontime_test'
ORDER BY table DESC, partition ASC, name ASC

17

Part is in use; can also omit

Part has not been merged

© 2022 Altinity, Inc.

Tips to optimized INSERT

Making INSERT faster
● Increase max_insert_threads (parallel creation of parts)
● Enable input_format_parallel_parsing to parallelize input parsing

○ Works for TSV/CSV/Values data

● Write bigger blocks (less merging afterwards)

Making INSERT less memory intensive
● Decrease max_insert_threads (reduces parts simultaneously in memory)
● Disable input_format_parallel_parsing
● Write smaller blocks (less memory required at INSERT time)

18

© 2022 Altinity, Inc. © 2021 Altinity, Inc.

How do basic
queries work?

19

© 2022 Altinity, Inc.

Aggregation is a key feature of analytic queries

20

SELECT Carrier,
 avg(DepDelay) AS Delay
FROM ontime
GROUP BY Carrier
ORDER BY Delay DESC

Aggregates group measurements for one more more dimensions

Aggregate
Function

Dimension

© 2022 Altinity, Inc.

How does ClickHouse process a query with aggregates?

21

SELECT Carrier,
 avg(DepDelay)AS Delay
FROM ontime
GROUP BY Carrier
ORDER BY Delay DESC

┌─Carrier─┬──────────────Delay─┐
│ B6 │ 12.058290698785067 │
│ EV │ 12.035012037703922 │
│ NK │ 10.437692933474269 │
. . .

ClickHouse Server

Parse/Plan

Merge/Sort

Scan
In-RAM
Hash

Tables

Parts in Storage

© 2022 Altinity, Inc.

How can you compute an average in parallel?

22

= 2

Numerator=6
Denominator=3Scan

Merge

1 2 3 1 3 5 0 5 0 0

Numerator=9
Denominator=3

Numerator=5
Denominator=4

6 + 9 + 5

3 + 3 + 4 Partial
Aggregate

© 2022 Altinity, Inc.

How does a ClickHouse thread do aggregation?

23

Merge/Sort

Scan Thread

Parts in Storage

AL => 4259/1070,
2385/415, …

DL => 20663/1198,
25166/2711, …
… Scan Thread

Hash Table

Other
Scan

Thread
Hash

Tables

Result

GROUP BY
Key

Partial
Aggregates

© 2022 Altinity, Inc.

We can now understand aggregation performance drivers

24

SELECT Carrier,
 avg(DepDelay)AS Delay
FROM ontime
GROUP BY Carrier
ORDER BY Delay DESC
LIMIT 50

Simple aggregate, short
GROUP BY key with few values

SELECT Carrier, FlightDate,
 avg(DepDelay) AS Delay,
 uniqExact(TailNum) AS Aircraft
FROM ontime
GROUP BY Carrier, FlightDate
ORDER BY Delay DESC
LIMIT 50

More complex aggregates, longer
GROUP BY with more values

3.4 sec
2.4 GB RAM

0.84 sec
1.6 KB RAM

© 2022 Altinity, Inc.

Parallelism affects speed and memory usage

25

SELECT Origin, FlightDate,
 avg(DepDelay) AS Delay,
 uniqExact(TailNum) AS Aircraft
FROM ontime
WHERE Carrier='WN'
GROUP BY Origin, FlightDate
ORDER BY Delay DESC
LIMIT 5

SET max_threads = 1
. . .
SET max_threads = 4
. . .
SET max_threads = 16

© 2022 Altinity, Inc.

This is a good time to mention ClickHouse memory limits

26

SQL
Query

max_memory_usage
(Default=10Gb)

Single query limit

SQL
Query

max_memory_usage_for_user
(Default=Unlimited)

All queries for a user

SQL
Query

SQL
Query

SQL
Query

All memory on server

ClickHouse
Process

max_server _memory_usage
(Default=90% of available RAM)

© 2022 Altinity, Inc.

Tips to make aggregation queries faster

● Remove/exchange “heavy” aggregation functions
● Reduce the number of values in GROUP BY
● Increase max_threads (parallelism)
● Reduce I/O

○ Filter out unnecessary rows
○ Improve compression of data in storage

27

© 2022 Altinity, Inc.

Tips to reduce memory usage in aggregation queries

● Remove/exchange “heavy” aggregation functions
● Reduce number of values in GROUP BY
● Change max_threads value
● Dump aggregates to external storage

○ SET max_bytes_before_external_group_by > 0

● Filter out unnecessary rows

28

© 2022 Altinity, Inc. © 2021 Altinity, Inc.

How do joins
work?

29

© 2022 Altinity, Inc.

JOIN combines data between tables
SELECT o.Dest,
 any(a.Name) AS AirportName,
 count(Dest) AS Flights
FROM ontime o JOIN airports a
 ON a.IATA = o.Dest
GROUP BY Dest
ORDER BY Flights
DESC LIMIT 10

30

Join condition

“Left”
Table

“Right”
Table

© 2022 Altinity, Inc.

How does ClickHouse process a query with a join?

Left Side
Table
(Big)

Merged
Result

Filter

Right Side
Table

(Small)

In-RAM
Hash
Table

Load the right side table

Scan left side table in
parallel, computing

aggregates and adding
joined data

Merge and sort results

31

Keys and
column
values!

© 2022 Altinity, Inc.

Let’s look more deeply at what’s happening in the scan

. . .
IATA
. . .

airports
. . .
Dest
. . .

ontime

SELECT . . . FROM ontime o JOIN airports a ON a.IATA = o.Dest

32

S
c
a
n

ATL 576
1501
3302
…

Hartsfield Jackson Atlanta International Airport
Hartsfield Jackson Atlanta International Airport
Hartsfield Jackson Atlanta International Airport
…

ORD 255 Chicago O'Hare International Airport

Partial
aggregates

© 2022 Altinity, Inc.

It would be more efficient to join after aggregating

Left Side
Table
(Big)

Merge

Filter

Right Side
Table

(Small)

In-RAM
Hash
Table

Load the right side table

Scan left side table in
parallel, computing

aggregates

Merge, then join and sort

33
Join

© 2022 Altinity, Inc.

You can do exactly that with a subquery
SELECT o.Dest, any(a.Name) AS AirportName,
 count(Dest) AS Flights
FROM ontime o
JOIN default.airports a ON a.IATA = o.Dest
GROUP BY Dest ORDER BY Flights
DESC LIMIT 10

SELECT o.Dest, a.Name AS AirportName, o.Flights
FROM (
 SELECT Dest, count(Dest) AS Flights
 FROM ontime GROUP BY Dest) AS o
JOIN default.airports a ON a.IATA = o.Dest
ORDER BY Flights DESC LIMIT 10

34

2.71 sec
19.9 MB RAM

0.663 sec
1.58 KB RAM

© 2022 Altinity, Inc.

Simple ways to keep JOINs fast and efficient

● Keep the right side table(s) overall size small
● Minimize the columns joined from the right side
● Add filter conditions to the right side table to reduce rows
● JOIN after aggregation if possible
● Use a Dictionary instead of a JOIN

○ Dictionaries are just loaded once and can be shared across queries

35

Pro tip: The SQL IN operator is also a join under the covers.

© 2022 Altinity, Inc. © 2021 Altinity, Inc.

How does a
distributed query

work?

36

© 2022 Altinity, Inc.

Example of a distributed data set with shards and replicas

clickhouse-0

ontime
_local

airports

ontime

clickhouse-1

ontime
_local

airports

ontime

clickhouse-2

ontime
_local

airports

ontime

clickhouse-3

ontime
_local

airports

ontime

Distributed
table

(No data)

Sharded,
replicated

table
(Partial data)

Fully
replicated

table
(All data)

37

© 2022 Altinity, Inc.

Distributed send subqueries to multiple nodes

ontime
_localontime

Application

ontime
_localontime

ontime
_localontime

ontime
_localontime

Application

Innermost
subselect is
distributed

AggregateState
computed

locally
Aggregates
merged on

initiator node

38

© 2022 Altinity, Inc.

Queries are pushed to all shards

SELECT Carrier, avg(DepDelay) AS Delay
FROM ontime
GROUP BY Carrier ORDER BY Delay DESC

SELECT Carrier, avg(DepDelay) AS Delay
FROM ontime_local
GROUP BY Carrier ORDER BY Delay DESC

39

© 2022 Altinity, Inc.

ClickHouse pushes down JOINs by default

SELECT o.Dest d, a.Name n, count(*) c, avg(o.ArrDelayMinutes) ad
 FROM default.ontime o
 JOIN default.airports a ON (a.IATA = o.Dest)
 GROUP BY d, n HAVING c > 100000 ORDER BY d DESC
 LIMIT 10

SELECT Dest AS d, Name AS n, count() AS c, avg(ArrDelayMinutes) AS
ad
 FROM default.ontime_local AS o
 ALL INNER JOIN default.airports AS a ON a.IATA = o.Dest
 GROUP BY d, n HAVING c > 100000 ORDER BY d DESC LIMIT 10

40

© 2022 Altinity, Inc.

...Unless the left side “table” is a subquery

SELECT d, Name n, c AS flights, ad
FROM
(
 SELECT Dest d, count(*) c, avg(ArrDelayMinutes) ad
 FROM default.ontime
 GROUP BY d HAVING c > 100000
 ORDER BY ad DESC
) AS o
LEFT JOIN airports ON airports.IATA = o.d
LIMIT 10

Remote
Servers

41

© 2022 Altinity, Inc.

It’s more complex when multiple tables are distributed

select foo from T1 where a in (select a from T2)

distributed_product_mode=?

local
select foo
from T1_local
where a in (
 select a
 from T2_local)

allow
select foo
from T1_local
where a in (
 select a
 from T2)

global
create temporary table
tmp Engine = Set
AS select a from T2;

select foo from
T1_local where a in
tmp;

(Subquery runs on
local table)

(Subquery runs on
distributed table) (Subquery runs on initiator;

broadcast to local temp table)
42

© 2022 Altinity, Inc.

Tips to make distributed queries more efficient

● Think about where your data are located
● Move WHERE and heavy grouping work to left hand side of join
● Use a subquery to order joins after the remote scan
● Use the query_log to see what actually executes on the remote node(s)

43

© 2022 Altinity, Inc. © 2021 Altinity, Inc.

Where to learn
more

44

© 2022 Altinity, Inc.

Where is the documentation?

ClickHouse official docs – https://clickhouse.com/docs/

Altinity Blog – https://altinity.com/blog/

Altinity Youtube Channel –
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA

Altinity Knowledge Base – https://kb.altinity.com/

Meetups, other blogs, and external resources. Use your powers of Search!

45

https://clickhouse.com/docs/
https://altinity.com/blog/
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA
https://kb.altinity.com/

© 2022 Altinity, Inc.

References for this talk

Altinity Knowledge Base – https://kb.altinity.com/

ClickHouse Source Code – https://github.com/ClickHouse/ClickHouse

Talks and Blog Articles -

● ClickHouse Deep Dive, Alexey Milovidov
● Про JOIN’ы (в ClickHouse) - Artyem Zuikov
● Модификаторы DISTINCT и ORDER BY для всех агрегатных функций -

Sofia Sergeevna Borzenkova
● ClickHouse Kernel Analysis - Storage Structure and Query Acceleration of

MergeTree - Alibaba Cloud

46

https://kb.altinity.com/
https://github.com/ClickHouse/ClickHouse
https://www.slideshare.net/Altinity/clickhouse-deep-dive-by-aleksei-milovidov
https://github.com/ClickHouse/clickhouse-presentations/blob/master/meetup38/join.pdf
https://presentations.clickhouse.com/hse_2020/3rd/DistinctOrderByCombiners_pres.pdf
https://www.alibabacloud.com/blog/clickhouse-kernel-analysis-storage-structure-and-query-acceleration-of-mergetree_597727
https://www.alibabacloud.com/blog/clickhouse-kernel-analysis-storage-structure-and-query-acceleration-of-mergetree_597727

© 2022 Altinity, Inc.

Thank you!
Questions?
https://altinity.com

47

https://altinity.com

