
© 2023 Altinity, Inc.

S3 Storage and ClickHouse®
Basic and Advanced
Wizardry

Robert Hodges - Altinity CEO
Alexander Zaitsev - Altinity CTO

1
*And ClickHouse, too!

© 2023 Altinity, Inc.

A brief message from our sponsor…

ClickHouse support and services: Altinity.Cloud and Altinity Stable Builds
Authors of Altinity Kubernetes Operator for ClickHouse

Robert Hodges
Database geek with 30+ years

on DBMS. Kubernaut since
2018. Day job: Altinity CEO

Alexander Zaitsev
Expert in high scale analytics

systems design and
implementation. Altinity CTO

2

https://altinity.com/cloud-database/
https://docs.altinity.com/altinitystablebuilds/
https://github.com/Altinity/clickhouse-operator

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

How Does S3 Fit
into ClickHouse

3

© 2023 Altinity, Inc.

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

Meet ClickHouse. It’s a real-time analytic database

It’s the core engine for
low-latency analytics

ClickHouse

Event
Streams

ELT

Object
Storage

Interactive
Graphics

Dashboards

APIs

4

© 2023 Altinity, Inc.

Let’s start with an ordinary ClickHouse table

CREATE TABLE test (
 `A` Int64,
 `S` String,
 `D` Date
)
ENGINE = MergeTree
PARTITION BY D
ORDER BY A;

INSERT INTO test
SELECT number, number,
'2023-01-01' FROM numbers(1e8);

5

Use MergeTree for “big data”

Divide table into parts by day

Load 100M rows of test data

Order data in parts by A value

© 2023 Altinity, Inc.

Here’s where the data goes in shared-nothing storage

6

Host

OS page cache

ClickHouse
MergeTree Engine

Table
definition

Metadata
Table data

I/O flows
through OS
page cache

Columnar
Data

© 2023 Altinity, Inc.

Performance is pretty good!

7

Q1: SELECT *
FROM test_s3_tiered WHERE A =
443

Q2: SELECT uniq(A)
FROM test_s3_tiered;

Q3: SELECT count()
FROM test_s3_tiered
WHERE S LIKE '%4422%'

[SETTINGS
min_bytes_to_use_direct_io=1] ClickHouse 23.7.4.5; M6i.2xlarge; EBS gp3

© 2023 Altinity, Inc.

Shared nothing has limitations as data size grows

8

Host

OS page cache

ClickHouse
MergeTree Engine

🆇 Limited capacity per server (< 50 Tb)
🆇 Block storage is expensive
🆇 Requires multiple copies when replicated

© 2023 Altinity, Inc.

S3 storage* is a welcome addition to ClickHouse

9

S3 Object Storage
Host

OS page cache

ClickHouse
MergeTree Engine

✅ Unlimited Capacity

✅ 4-5x Cheaper than EBS**

✅ Shareable

✅ Data lakes

* Including S3 compatible storage like GCS, MinIO, and Ceph

** For storage only. There are other costs that make it higher

© 2023 Altinity, Inc.

But it’s not all peaches and cream

10

S3 Object Storage
Host

OS page cache

ClickHouse
MergeTree Engine

🆇 Very different API

🆇 Can’t update files

🆇 No automated cache

🆇 Extra cost for traffic
and API calls

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

Using S3 for
MergeTree

Storage

11

© 2023 Altinity, Inc.

ClickHouse Configuration for S3

You need to configure multiple things:

● “Disk” to specify how to access S3 bucket
● Optionally another “disk” to configure cache
● “Volume” and “Storage Policy” that specifies how S3 disk is used
● Attach policy to MergeTree table

12

© 2023 Altinity, Inc.

Storage configurations organize storage into policies

Disk

Policy

Volume

default

default

default
(type: local)

s3_direct

main

s3_disk
(type: s3)

s3_cached

main

s3_cache
(type: cache)

s3_disk
(type: s3)

Reads and writes to
/var/lib/clickhouse

Reads and writes
to S3 endpoint

Reads and writes through
cache to S3 endpoint

© 2023 Altinity, Inc.

Example of storage configuration definition

<clickhouse> <storage_configuration> <disks>
 <s3_disk>
 <type>s3</type>
 <endpoint>https://s3.us-west-2.amazonaws.com/bucket/</endpoint>
 . . . # credentials here
 <metadata_path>/var/lib/clickhouse/disks/s3_disk/</metadata_path>
 </s3_disk>
 </disks>
 <policies>
 <s3_direct>
 <volumes>
 <main> <disk>s3_disk</disk> </main>
 </volumes>
 </s3_direct>
 </policies>. . .

14

© 2023 Altinity, Inc.

Tiered storage is a popular way to layer storage

Disk

Policy

Volume

s3_tiered

default
priority=1

default
(type: local)

s3_direct
priority=2

s3_disk
(type: s3)

Inserted data land on block
storage, then move to S3

© 2023 Altinity, Inc.

Configuration for tiered storage

<clickhouse> <storage_configuration>
 <disks>
 <s3_disk> . . . </s3_disk>
 </disks>
 <policies>
 <s3_tiered>
 <volumes>
 <hot> <disk>default</disk>
 <move_factor>0.1</move_factor></hot>
 <cold> <disk>s3_disk</disk> </cold>
 </volumes>
 </s3_tiered>
 </policies>
</storage_configuration> </clickhouse>

16

© 2023 Altinity, Inc.

Cache can be used to speed up S3 queries

Disk

Policy

Volume

s3_tiered

default
priority=1

default
(type: local)

s3_cached
priority=2

s3_cache
(type: cache)

s3_disk
(type: s3)

Inserted data land on block
storage, then move to S3

© 2023 Altinity, Inc.

Using a cache instead of an s3 disk

<clickhouse> <storage_configuration> <disks>
 <s3_disk>
 <type>s3</type> . . .
 </s3_disk>
 <s3_cache>
 <type>cache</type>
 <disk>s3_disk</disk>
 <path>/var/lib/clickhouse/s3_cache/cache/</path>
 <max_size>20Gi</max_size>
 </s3_cache>
 </disks>
 <policies>
 <s3_cached> <volumes>
 <main> <disk>s3_cache</disk> </main>
 </volumes> </s3_cached> . . .

18

© 2023 Altinity, Inc.

Now we are ready to use MergeTree with a storage policy

CREATE TABLE test_s3_direct
(
 `A` Int64,
 `S` String,
 `D` Date
)
ENGINE = MergeTree
PARTITION BY D
ORDER BY A
SETTINGS
 storage_policy = 's3_direct';

19

ClickHouse

S3 Service

© 2023 Altinity, Inc.

Moving from block storage to S3 using a TTL

CREATE TABLE test_s3_tiered(
 `A` Int64,
 `S` String,
 `D` Date
)
ENGINE = MergeTree
PARTITION BY D
ORDER BY A
TTL D + INTERVAL 7 DAY TO VOLUME 's3_cached'
SETTINGS storage_policy = 's3_tiered';

20

© 2023 Altinity, Inc.

Two other ways to move data

21

<!-- Volume setting: move when less than 10% free -->
<move_factor>0.1</move_factor>

ALTER TABLE test_s3_tiered
MOVE PARTITION '2023-01-01' TO VOLUME 'cold'

Moves data automatically
to next volume

And you can always move
data yourself

© 2023 Altinity, Inc.

Performance of tables with different storage policies

22

Test queries:

Q1: SELECT *
FROM test_s3_tiered
WHERE A = 443

Q2: SELECT uniq(A)
FROM test_s3_tiered;

Q3: SELECT count()
FROM test_s3_tiered
WHERE S LIKE '%4422%'

ClickHouse 23.7.4.5; M6i.2xlarge; EBS gp3

© 2023 Altinity, Inc.

Managing background merges in S3

23

s3

s3_direct

s3

s3_tiered

default

Merges
in S3 Merges in

block
storage

S3 volume settings
➔ prefer_not_to_merge=1
➔ perform_ttl_move_on_insert=0

Adjust to avoid S3 rate limits

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

S3 storage in
ClickHouse

clusters

24

© 2023 Altinity, Inc.

ReplicatedMergeTree over LocalStorage

ClickHouse

Table data
Metadata

ZooKeeper

Metadata

ClickHouse

Table data
Metadata

ClickHouse

Table data
Metadata

25

Replicate Replicate

© 2023 Altinity, Inc.

ReplicatedMergeTree over Object Storage

ClickHouse

Data Refs
Metadata

ZooKeeper
Metadata

ClickHouse

Data Refs
Metadata

ClickHouse

Data Refs
Metadata

S3 Object
Storage

Replicate Replicate

© 2023 Altinity, Inc.

Two models for storing S3 table data

27

ClickHouse

Data Refs
Metadata

ClickHouse

Data Refs
Metadata

ClickHouse

Data Refs
Metadata

ClickHouse

Data Refs
Metadata

Multiple copies of S3 data “Zero Copy”

© 2023 Altinity, Inc.

MergeTree property to enable “zero copy” replication

<clickhouse>
 <merge_tree>
 <allow_remote_fs_zero_copy_replication>
 true
 </allow_remote_fs_zero_copy_replication>
 </merge_tree>
</clickhouse>

28

© 2023 Altinity, Inc.

Current state of using S3 table storage in clusters

Good
● S3 is usable for long tail data that

does not change a lot
● Replication works – use latest 23.7

or above
○ Lots of fixes

● max_parallel_replicas setting
enables scale-out

29

Bad
● Refs and data are separated
● Zero-copy replication is still messy

○ Preserving ref counters across
cluster is tricky

○ Hard to do backups
○ Needs more verification of

recent fixes
● Every node needs all metadata =>

does not scale-out to many nodes

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

Using S3 as a
Data Lake

30

© 2023 Altinity, Inc.

Using S3 table engine to read and write Parquet

CREATE TABLE
test_s3_table_parquet (
 `A` Int64,
 `S` String,
 `D` Date
)
ENGINE = S3(<S3 Url>, 'Parquet')

INSERT INTO test_s3_table_parquet
SELECT number, number,
'2023-01-01' FROM numbers(1e8);

31

Table definition gives location
and columns

Load 100M rows of test data

© 2023 Altinity, Inc.

Multiple ways to select data from S3

SELECT count()
FROM test_s3_table_parquet
WHERE S LIKE '%4422%';

SELECT count() FROM
s3(<S3 Url>, 'Parquet')
WHERE S LIKE '%4422%';

SELECT count() FROM
s3Cluster('<cluster>', '<S3 Url>', 'Parquet')
WHERE S LIKE '%4422%';

32

Selects using threads on the
current server

Selects using threads on the
current server

Selects using all servers in
cluster

© 2023 Altinity, Inc.

S3 Parquet is slower than block storage (but it’s cheaper!)

33

Test queries:

Q1: SELECT *
FROM <test_table> WHERE
A = 443

Q2: SELECT uniq(A)
FROM <test_table>;

Q3: SELECT count()
FROM <test_table>
WHERE S LIKE '%4422%'

ClickHouse 23.7.4.5; M6i.2xlarge; EBS gp3

© 2023 Altinity, Inc.

Using S3 table function is more powerful

INSERT INTO FUNCTION s3('<s3
url>/{_partition_id}.parquet',
<credentials>, 'Parquet')
PARTITION BY D
SELECT
 number as A,
 number as S,
 toDate('2023-01-01') +
intDiv(A,1e7) as D
 FROM numbers(1e8);

34

_partition_id macro allows to
generate multiple files

Split written files by day

Load 100M rows of test data

© 2023 Altinity, Inc.

Querying multiple Parquet files using globs

35

Q1: SELECT * FROM s3('<s3 url>/*.parquet',
<credentials>) WHERE A = 443

Q2: SELECT uniq(A) FROM s3('<s3 url>/*.parquet',
<credentials>);

Q3: SELECT count() FROM s3('<s3 url>/*.parquet',
<credentials>)
WHERE S LIKE '%4422%';

‘_path’ and ‘_file’ virtual columns are available.

© 2023 Altinity, Inc.

Ways to pass S3 credentials to ClickHouse

36

<clickhouse>
 <s3>
 <data-lake>
 <endpoint from_env="AWS_S3_DATALAKE_URL"/>
 <use_environment_credentials>1</use_environment_credentials>
 </data-lake>
 </s3>
</clickhouse>

Method 1: pass values as
environment variables using
<s3> configuration tag

Method 2: Pass keys as strings
in <s3> configuration tag

Method 3: Grant cloud IAM
role to ClickHouse VM

Method 4: Use a named
collection with keys

© 2023 Altinity, Inc.

Trade-offs associated with Parquet in S3

Good

● Works with files already in S3
● Parquet compression is good
● Data is accessible to applications

outside of ClickHouse
● Parquet is faster than MergeTree on

S3 in some cases
● Reads and writes with s3Cluster() are

very fast due to parallelization

Bad

● Difficult to update/delete data from
ClickHouse

● S3 table engine does not do what
you expect; use s3() table function

● S3 tables do not merge or otherwise
optimize file layout

● Hot/cold tiering is an application
exercise

37

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

S3 Telemetry

38

© 2023 Altinity, Inc.

Accessing ClickHouse counters for S3

39

-- Select all event counters for S3.
SELECT * FROM system.events WHERE event ILIKE '%s3%';

-- Print some of our faves.
SELECT
 sumIf(value, event = 'S3PutObject') as S3PutObject,
 sumIf(value, event = 'S3GetObject') as S3GetObject,
 sumIf(value, event = 'WriteBufferFromS3Bytes') as WriteBufferFromS3Bytes,
 sumIf(value, event = 'ReadBufferFromS3Bytes') as ReadBufferFromS3Bytes
FROM system.events;

┌─S3PutObject─┬─S3GetObject─┬─WriteBufferFromS3Bytes─┬─ReadBufferFromS3Bytes─┐
│ 4026 │ 6987 │ 5862641197 │ 32284663529 │
└─────────────┴─────────────┴────────────────────────┴───────────────────────┘

© 2023 Altinity, Inc.

Fetching data about the file system cache

40

-- Find file system cache metrics.
SELECT * FROM system.metrics
WHERE metric ILIKE '%filesystemcache%' ORDER BY metric;

-- Size of the disk cache.
SELECT cache_name, formatReadableSize(sum(size)) AS size
FROM system.filesystem_cache
GROUP BY cache_name;

┌─cache_name─┬─size─────┐
│ s3_cache │ 1.07 GiB │
└────────────┴──────────┘

© 2023 Altinity, Inc.

Checking allocated storage size

41

-- Get size of parts on each disk type.
SELECT disk_name, formatReadableSize(sum(bytes_on_disk))
FROM system.parts WHERE active
GROUP BY disk_name ORDER BY disk_name;
┌─disk_name─┬─formatReadableSize(sum(bytes_on_disk))─┐
│ default │ 1.23 GiB │
│ s3_disk │ 1.83 GiB │
└───────────┴──┘

-- Sum files currently managed in s3.
SELECT formatReadableSize(sum(size)) FROM system.remote_data_paths;
┌─formatReadableSize(sum(size))─┐
│ 3.66 GiB │
└───────────────────────────────┘

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

Coming
Attractions

42

© 2023 Altinity, Inc.

Topics for further discussion

● SharedMergeTree (closed source from ClickHouse Inc.)
● Deliverables for improved open source S3 capabilities

○ Robust zero-copy replication
○ Simplification of storage organization
○ Better integration with existing tiered storage
○ Backup
○ Testing and robustness
○ Documentation

43

Want to assist with or sponsor S3 support improvements?
Contact Altinity at http://altinity.com

© 2023 Altinity, Inc. © 2023 Altinity, Inc.

Wrap-Up

44

© 2023 Altinity, Inc.

Best practices for MergeTree on S3

● Avoid a lot of changes to data in S3
○ Don’t refresh data every day for example - will drive up S3 API costs

● Add S3 and caching telemetry to monitoring
● Use zero copy replication with caution

45

© 2023 Altinity, Inc.

Best practices for data lake / Parquet approach

● Data should be readonly
● Ensure data is properly merged and sorted before archiving to Parquet
● If you want to delete data you’ll need to design for it

○ E.g., split up Parquet files by tenant

● Be careful with file names when writing data to S3

46

© 2023 Altinity, Inc.

References

47

● Samples for this talk: https://github.com/Altinity/clickhouse-sql-examples
● ClickHouse Inc documentation
● DoubleCloud Blog: How S3-based ClickHouse hybrid storage works under

the hood
● Altinity KB articles on S3 policies and cache behavior (such as this one)
● Altinity Blog articles tagged with S3

https://github.com/Altinity/clickhouse-sql-examples
https://clickhouse.com
https://double.cloud/blog/posts/2022/11/how-s3-based-clickhouse-hybrid-storage-works-under-the-hood/
https://double.cloud/blog/posts/2022/11/how-s3-based-clickhouse-hybrid-storage-works-under-the-hood/
https://kb.altinity.com/altinity-kb-setup-and-maintenance/altinity-kb-s3-object-storage/s3_cache_example/
https://altinity.com/blog/tag/s3/

© 2023 Altinity, Inc.

Thank you!

Visit us:
 https://altinity.com
 Altinity Slack (Invite Link)

Altinity.Cloud
Altinity Stable Builds for ClickHouse
Altinity Kubernetes Operator for ClickHouse

48

https://altinity.com
https://join.slack.com/t/altinitydbworkspace/shared_invite/zt-1togw9b4g-N0ZOXQyEyPCBh_7IEHUjdw

© 2023 Altinity, Inc.

S3 Service

Here’s how object storage works in Altinity.Cloud

49

Host

VM

OS page cache

Bucket

Write-once files
(No updates)

PUT

GET
(Reads all or
part of file)

ClickHouse Disk Cache

ClickHouse Server

© 2023 Altinity, Inc.

Here’s where the data goes

50

Elastic Block Storage

Columnar data and
metadata in dedicated

block storage
Host

OS page cache

ClickHouse
MergeTree Engine

Host

OS page cache

ClickHouse
MergeTree Engine

Direct-attached Storage

© 2023 Altinity, Inc.

How MergeTree manages storage and caches in general

51

Table Primary
Key Indexes Mark Cache Index

Cache
Uncompressed

Block Cache

Disk Type: “local”
Columnar data on block

storage

Disk Type: “s3”
Columnar data in object

storage

Linux Page Cache

Disk Type: “cache”
ClickHouse Disk

Cache

MergeTree Table Engine

© 2023 Altinity, Inc.

ReplicatedMergeTree over Object Storage

(Zoo)Keeper

Node1

refs to data

Node3

refs

metadata

metadata

Node2

metadata metadata

refs to data

Goods:
● It works
● max_parallel_replicas for

scaling out

Bads:
● Refs and data are separated
● Zero-copy replication is still

messy
● Every node needs all metadata

=> does not scale-out to many
nodes

