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One verification 
platform to  secure     
the whole user 
journey



Why use schema-agnostic 
approach in ClickHouse?

Active phase of feature development 
without understanding all the needed 
columns

Adding new calculated metrics to the 
process (e.g. A/B tests)

Other technical logs with no specific 
requirements



How do we collect data for product analytics?

Source Data Lake Product Analytics

Aggregates

Materialized View

Transformation

Backend

Frontend
DataHub

(Documentation)



Initial state:

● Every engineer create their 
own event logic

● One end-point table for all 
logs

● Analysts need lots of 
context to calculate simple 
metrics

SELECT dayTs,
      JSONExtractString(metadata, 
'customField') AS customField,
      JSONExtractString(metadata, 'statCol')       
AS statCol,
      JSONExtractRaw(metadata, 'newCol')      
AS newCol,
…
FROM actions
WHERE dayTs >= today() - 30
 AND action = 'random:event:with:diffSize'*

Showcase: Frontend logs with Materialized Views

* Example of the select request to the event with JSON “metadata” column and action grammar before changes 



Materialized View for frontend logs

Event 
grammar

Materialized 
Views



● Setting the unified events grammar subject:verb:object 
● Documenting the required structure of the JSON (e.g. Confluence)

subject (who does something) + 
verb (what action a subject does) + 
object (which object is affected by this action)

Event grammar
Starting from the documented log structure



JavaDoc (documentation generator) *

Confluence + Javadoc

* Example of JavaDoc interface from devs

*

* Example of Confluence documentation structure for analysts



Tools and formats for documentation

JavaDoc

JSDoc

YAML

Documentation 
generators

Description 
formats

Description 
tools



{
  "stageName" : "Selfie",
  "screenName" : "Camera screen",

  …

  "source" : "service"
}

stageName screenName source

Selfie Camera screen service

More context on user flow

user:started:stage 



JSON structure for metadata of frontend logs

 {
   "action": "user:clicked:button",
   "metadata": {
     "source": "service",
     "layer": "frontend",
     "screenName": "Camera screen",
     "objectName":  
"continueButton",
     "stageName": "Selfie"
   }
 }

subject verb object



dayTs userId action metadata

2023-04-01 15:06:07 1234567890 user:started:step {
 "stageName" : "Selfie",
 "screenName" : "Camera options",
 "objectName" : "Selfie",
 "source" : "service",
 "layer" : "frontend",
…
}

2023-04-01 15:06:12 1234567890 user:clicked:button {
 "stageName" : "Warning",
 "screenName" : "Warning",
 "objectName" : "Continue button",
 "source" : "service",
 "layer" : "frontend",
…
}

Example events in Data Lake



SELECT dayTs,
      userId,
      action,
      JSONExtractString(metadata, 'source')          as source,
      JSONExtractString(metadata, 'layer')           as layer,
      JSONExtractString(metadata, 'screenName')      as screenName,
      JSONExtractString(metadata, 'objectName')      as objectName,
      JSONExtractString(metadata, 'stageName')       as stageName
FROM actions
WHERE source = 'service'
 AND layer = 'frontend'
 AND action = 'user:clicked:button';

Search for clicks by any button



Data Lake Product Analytics

Materialized View

Transformation

Materialized View

A materialized view is a special 
trigger that stores the result of a 
SELECT query on data, as it is 
inserted, into a target table



dayTs userId action metadata

Date String String String

dayTs userId action source layer screenName objectName stageName

Date String String String String String String String

- Democratize the access to data 
- Make real-time analytics 

convenient

Why use Materialized View?
- Save time of data engineers
- Make small and readable CH 

queries
- Answer business questions faster



Materialized View logic

INSERT actions 
(ReplacingMergeTree)

SELECT

frontend_actions_mv
(Materialized View)

SELECT

(Trigger)

frontend_actions
(MergeTree)

INSERT



CREATE TABLE actions
(
   `dayTs`    Date,
   `userId`   String,
   `action`   String,
   `metadata  ̀String
) ENGINE = ReplacingMergeTree()
     PARTITION BY toYYYYMM(dayTs)
     ORDER BY (dayTs, action, userId)
     SAMPLE BY cityHash64(userId)
     SETTINGS index_granularity = 8192;

Base table schema 
(Data Lake)

CREATE TABLE frontend_actions
(
   `dayTs`      Date,
   `userId`     String,
   `action  ̀    String,
   `source  ̀    String,
   `layer`      String,
   `screenName` String,
   `objectName` String,
   `stageName`   String
) ENGINE = ReplicatedMergeTree()
     PARTITION BY toYYYYMM(dayTs)
     ORDER BY (dayTs)
     SETTINGS index_granularity = 8192;

Materialized View 
schema

Creating Materialized View



CREATE MATERIALIZED VIEW frontend_actions_mv TO frontend_actions
AS
SELECT dayTs,
      userId,
      action,
      JSONExtractString(metadata, 'source')          as source,
      JSONExtractString(metadata, 'layer')           as layer,
      JSONExtractString(metadata, 'screenName')      as screenName,
      JSONExtractString(metadata, 'objectName')      as objectName,
      JSONExtractString(metadata, 'stageName')       as stageName
FROM actions
WHERE source = 'service'
 AND layer = 'frontend';

Creating Materialized View



Materialized View logic

INSERT actions 
(ReplacingMergeTree)

SELECT

frontend_actions_mv
(Materialized View)

SELECT

(Trigger)

frontend_actions
(MergeTree)

INSERT



Insert historical data to Materialized View

INSERT INTO frontend_actions
SELECT dayTs,
      userId,
      action,
      JSONExtractString(metadata, 'source')          as source,
      JSONExtractString(metadata, 'layer')           as layer,
      JSONExtractString(metadata, 'screenName')      as screenName,
      JSONExtractString(metadata, 'objectName')      as objectName,
      JSONExtractString(metadata, 'stageName')       as stageName
FROM actions
WHERE source = 'service'
 AND layer = 'frontend'
 AND dayTs >= today()-30;



● Requires knowledge and access 
to Airflow

● Not real-time
● Takes more time to set up and 

often depends on data 
engineers 

● Do not need Airflow or any cron 
for inserts

● Requires only a query from 
analyst

● Real-time
● Could be a smaller table which 

then can become a part of a 
larger one

● Takes less memory

Aggregate Materialized View



Impact of the approach

Time spent by analyst 4 hours → <1 hour
Time of query execution x2 faster

500 rows retrieved starting from 1 in 8 s 
383 ms (execution: 7 s 936 ms, fetching: 
447 ms)

500 rows retrieved starting from 1 in 3 s 
111 ms (execution: 2 s 769 ms, fetching: 
342 ms)

Superset dashboards 
optimisation

● Faster charts
● Single datasource



Initial step:

● Analysts aggregate raw data to analyse each experiment
● Calculate same metrics in different ways without synchronization
● Prepare dashboards for each experiment

Product analysts need to:

● Calculate results of A/B tests automatically
● Add new metrics without changing schema every time
● See the results and experimental history in one place 

Showcase: A/B testing results with Aggregates



A/B testing results with Aggregates: Solution

Aggregate Visualisation



Aggregate

Data Lake Product Analytics

Aggregates

Transformation

Summarized tables which can be 
based on several other tables, 
aggregate functions and other 
conditions. Inserted to the 
schema on schedule.



Creating the aggregate with experiment metrics

CREATE TABLE experiment_results
(
   dt                DateTime,
   userId            Int64,
   experimentId      Int32,
   experimentalGroup String,
   metricsNames      Array(String),
   metricsValues     Array(UInt64)
) ENGINE = MergeTree()
     PARTITION BY dt
     ORDER BY (dt, userId, experimentId)
     SAMPLE BY cityHash64(userId)
     SETTINGS index_granularity = 8192;

Aggregate schema



Creating the aggregate with experiment metrics
select dt,
      userId,
      experimentId,
      experimentalGroup ,
      ['clicks', 'views'] as metricsNames,
      [clicks, views]     as metricsValues
from (select dt,
            userId,
            experimentId,
            experimentalGroup ,
            countIf(event = 'click') as clicks,
            countIf(event = 'view')  as views
     from events
     where dt >= '2023-02-02'
       and experimentId = 1
     group by userId,
              experimentId,
              experimentalGroup ,
              dt);

Query for the schema

dt userId experimentId experimentalGroup event

2023-02-02 1234567890 345 control click

2023-02-02 1234567891 345 test view

2023-02-02 1234567892 345 control view

You can add metric like 
clicksMainPage

Base table



Example code for Airflow DAG
from datetime import datetime
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from clickhouse_driver import Client

default_args = {
   'owner': 'airflow',
   'start_date': datetime(2023, 7, 20),
}

dag = DAG('insert_experiment_results' , default_args=default_args, schedule_interval= '0 1 * * 
*')

def insert_experiment_results():
   clickhouse_conn = Client( host='your_clickhouse_host' , port='your_clickhouse_port' )
   query = '''query on the next slide'''
   clickhouse_conn.execute( query)

insert_data_task = PythonOperator(
   task_id='insert_data_task' ,
   python_callable=insert_experiment_results,
   dag=dag,
)

insert_data_task



Example code for Airflow DAG (query)

def insert_experiment_results():
   clickhouse_conn = Client(host='your_clickhouse_host', port='your_clickhouse_port')
   query = '''
       INSERT INTO experiment_results
       (dt, userId, experimentId, experimentalGroup, metricsNames, metricsValues)
       SELECT dt, userId, experimentId, experimentalGroup, ['clicks', 'views'], 
[clicks, views]
       FROM (
           SELECT dt, userId, experimentId, experimentalGroup,
               countIf(event = 'click') AS clicks,
               countIf(event = 'view') AS views
           FROM events
           WHERE dt >= '2023-02-02' AND experimentId = 1
           GROUP BY dt, userId, experimentId, experimentalGroup
       )
   '''
   clickhouse_conn.execute(query)



dt userId experimentId experimentalGroup metricsNames metricsValues

2023-04-01 123456789
0

345 test [‘clicks’, ‘views’] [28, 100]

2023-04-01 123456789
1

345 control [‘clicks’, ‘views’] [10, 90]

Events in experiment_results

SELECT dt, 
userId, 
experimentId, 
experimentalGroup, 
metricsNames, 
metricsValues 
FROM experiment_results
WHERE experimentId = ‘345’
ARRAY JOIN  metricsNames, 
metricsValues

dt userId experimentId experimentalGroup metricsNames metricsValues

2023-04-01 123456
7890

345 test clicks 28

2023-04-01 123456
7890

345 test views 100



Daily aggregate

Cumulative 
aggregate

Python code with 
statistics

Overall A/B platform system design

Raw data

Dashboard



Visualization in Superset

● Description of A/B tests
● Dynamics of metrics and 

statistics
● Group sizes







Impact of the approach

Historical results of the 
experiments

Saving time of analytics teamAccess to unified results for 
product managers and analysts

Transparency in metrics 
calculations



Thank you!


