
ETL vs ELT Cage Fight:
Using RudderStack and

ClickHouse to Build Real-Time
Data Pipelines

Robert Hodges – Eric Dodds

1

Let’s make some introductions

2

Robert Hodges
Database geek with 30+ years

on DBMS systems. Day job:
CEO at Altinity

Eric Dodds
Head of Product Marketing at

RudderStack, 10 years
building data stacks

…And introduce our companies

3

Altinity is the enterprise ClickHouse
provider that lets you run anywhere

with 100% open source analytic stacks

Real-time analytics in the cloud, on
Kubernetes, and on-prem

RudderStack is the Warehouse Native
CDP. Collection, unification and

activation of customer data.

Real-time event streaming, ETL, rETL,
transformations, ID res and more

Explainer:
ETL vs. ELT

ETL (Extract, Transform, Load) and ELT (Extract, Load,
Transform).

The main difference between ETL and ELT is the order in
which the transformation stage is performed.

ETL is useful for structured data that requires
transformation before reaching its destination (cleaning,
enrichment, integration customizations, privacy). These
can happen in batch or streaming formats.

ELT is useful when you want to retain an original copy of
the data and are performing various kinds of modeling in
the target system (most commonly a database). ELT is
also useful when you are working with unstructured or
semi-structured data, which can be transformed much
more efficiently after being delivered.

4

The path from data to enlightment

5

eCommerce Website

Analytic Database Funnel Analysis

User Visit Events

We transform data in many ways along the way

6

Name Description Example

Cleaning Make data consistent for downstream Normalizing addresses

Privacy Remove/anonymize/encrypt sensitive data Remove SSAN

Security Allow or block specific data sources Block invalid IPs

Enrichment Add additional denormalized information Add geolocation data

Customization Specialized changes for applications Change data to new format

Deduplication Remove extra copies of data Drop repeated visit events

Type mapping Change data for performance/efficiency Map Int64 to UInt8

Aggregation Summarize data for quick insight Website visitors per hour

There are two basic design choices for transformation

7

ETL == Extract, Transform, Load

Collect events from
source

Transform data
in-flight

Load transformed
data to database

ELT == Extract, Transform, Load

Collect events from
source

Load data to
database

Transform data
at rest

Do we need to fight over the winner?

8

ETL!
ELT!!

It does not have to be this way

9

ETL!
ELT!!

YES!

Introduction to
RudderStack

RudderStack delivers
trustworthy, real-time data to

the tools and teams that need it

10

Make Data
Valuable

About RudderStack

12

RudderStack delivers trustworthy, real-time data to
the tools and teams that need it.

We provide data pipelines and features that let you:

● Send first-party data across your stack in
real-time

● Transform that data in-flight, before reaching
your tools

● Activate enriched data back across your tools
and teams

Cloud
ETL

Reverse
ETL

200+ CLOUD TOOLS

15+ SDKs

Event Stream

WAREHOUSE/LAKEHOUSE/DATA LAKE

Event Stream

Cloud ETL

Reverse ETL

Event Stream

RudderStack Architecture Diagram

TRANSFORMATIONS
IDENTITY STITCHING
DATA GOVERNANCE

RUDDERSTACK
DATA PIPELINES:

What is RudderStack Transformations?

Transformations lets users customize event

data in real-time using JavaScript or Python.

With Transformations, users have the control

and flexibility to:

● Ship data projects faster

● Secure and build data trust

● Quickly adapt to change
14

RudderStack Transformations Use Cases

15

Custom Integrations &

More

Data Security &

Governance

Data Processing &
Enrichment

RudderStack Transformations allows users to manipulate event data in real-time with custom
Javascript or Python code to quickly execute use cases for:

Enrich payloads with user, geo,
AI data and more

Flatten schemas to fit
downstream tools

Modify events in real-time
before they reach your server

Hash/Mask/Replace PII and
sensitive data

Block or allow specific events
from reaching specific tools

Encrypt or decrypt PII, including
those stored in cookies

Rename event properties to any
naming convention

Create custom sources and
integrations

Dynamically send events to
different paths via webhook

Introduction to
ClickHouse

16

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is a real-time analytic database

It’s the core engine for
low-latency analytics

ClickHouse

Event
Streams

ELT

Object
Storage

Interactive
Graphics

Dashboards

APIs

17

ClickHouse Server Architecture

18

Query Parser Query Interpreter Query PipelineQuery

Table Primary
Key Indexes

Scanned
column

blocks from
storage

Joined
data (hash

tables)

Intermediate
Query Results
(hash tables)

Columnar data in block storage Columnar data in object
storage

OS Page Cache

Why is ClickHouse so fast?

19

Data
Partitioning

Codecs

Compression Skip Indexes Projections

Sharding

Distributed Query

Data
Types

Read
Replicas

Tiered Storage
Primary key indexIn-RAM dictionaries

Seeing is believing

20

Demo Time!

Sensor Input Data

21

{
 "sensor_id": "0",
 "sensor_type": "1",
 "time": "2019-01-01 00:00:00",
 "msg_type": "reading",
 "temperature": "46.31",
 "message": "",
 "device_type": "0",
}

Simplest way to load readings

22

INSERT INTO readings(sensor_id,
sensor_type, time, msg_type,
temperature, message)
Format JSONEachRow

JSON Data
Pipe input data to
clickhouse-client

Materialized views can transform input

23

readings_input
(Null)

readings_converted
(MergeTree)

readings_convert
(materialized view)

INSERT

(Trigger)

Source table Target table

INSERT

Source table definition

24

CREATE TABLE readings_input (
 `event` String
)
ENGINE = Null

Target table definition

25

CREATE TABLE readings_converted (
 `sensor_id` Int32 CODEC(DoubleDelta, LZ4),
 `sensor_type` UInt8,
 `time` DateTime CODEC(DoubleDelta, LZ4),
 `date` Date ALIAS toDate(time),
 . . .
 `event` String
) ENGINE = MergeTree
PARTITION BY toYYYYMM(time)
ORDER BY (msg_type, sensor_id, time)

Materialized view to convert input to correct datatypes

26

CREATE MATERIALIZED VIEW readings_convert
TO readings_converted
AS
SELECT
 toInt32(JSON_VALUE(event, '$.sensor_id')) AS `sensor_id`,
 toInt8(JSON_VALUE(event, '$.sensor_type')) AS
`sensor_type`,
 toDateTimeOrNull(JSON_VALUE(event, '$.time')) AS `time`,
 . . .
 `event`
FROM readings_input

We can do any transformation that SQL can!

27

CREATE MATERIALIZED VIEW pii_data
TO safe_data
AS
SELECT
 '000-00-00000' as ssan,
 toString(cityHash64(email)) as hashed_email,
 encrypt('aes-256-ofb', name, key) AS encrypted_name,
 . . .
FROM readings_input

Zero out SSAN

Hash email

AES-encrypt name

ClickHouse can even join on other ables to add data

28

readings_input
(Null)

readings_converted
(MergeTree)

readings_convert
(materialized view)

INSERT

INSERT
(Trigger)

Source table Target table

Other tables…
Other tables…

Other tables… JOIN

RudderStack and
ClickHouse
Together

29

Integrating RudderStack and ClickHouse

30

Webhook
Source

ClickHouse
Destination ClickHouse

Database

Post
Event
Data

Transformations

Seeing is believing

31

Demo Time!

How does schema management work?

32

ClickHouse Database

tracks

product_sale

Schema
created

automatically

All track-type
events listed

here

Product Sale
events stored

here

ClickHouse
Destination

Transformations

Hints for building a production system

33

ClickHouse Database

tracks

product_sale

Data
Conversion

product_sale_final

product_mv

Production
Data

Null Table
Engine

ClickHouse
Destination

Transformations

Use Rudderstack and ClickHouse for transformations

34

Name Description RudderStack ClickHouse

Cleaning Make data consistent for downstream ✅✅
Privacy Remove/anonymize/encrypt sensitive data ✅✅ ✅
Security Allow or block specific data sources ✅✅ ✅
Enrichment Add additional denormalized data ✅✅ ✅✅
Customization Specialized changes for applications ✅✅ ✅
Deduplication Remove extra copies of data ✅ ✅
Type mapping Change data for performance/efficiency ✅ ✅✅
Aggregation Summarize data for quick insight ✅✅

A few words about Reverse ETL

Reverse ETL: Send enriched data and audiences from your warehouse to your entire customer
data stack

Configure data mapping using a JSON editor: Customize warehouse table sync settings by
configuring JSON. Modify keys and add constants to customize payloads for every destination.

Create pipelines by writing SQL: Use our Reverse ETL Models feature to write SQL queries and
turn the resulting table into a Reverse ETL job.

● Push warehouse data to all of your business tools
● Support for all major cloud warehouses
● 150+ cloud destinations
● Enable advanced analytics-based use cases like personalization, recommendations, lead

scoring and more

35

Wrap-up

36

Summary points

● There’s no conflict between ETL and ELT – Use them both together
● RudderStack offers a rich set of tools to move and convert data in-flight
● ClickHouse offers a rich set of tools to convert data at rest
● Get off the ground quickly with RudderStack Cloud and Altinity.Cloud

37

38

Thank you!
Questions?
https://altinity.com
Altinity.Cloud
Contact Altinity

https://rudderstack.com
RudderStack Cloud
Contact RudderStack

https://altinity.com
https://altinity.com/contact/
https://rudderstack.com

