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Let’s make some introductions
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Robert Hodges
Database geek with 30+ years 

on DBMS systems. Day job: 
CEO at Altinity

Rohan Pednekar
Sr. Product Manager at Ahana, 

Open Source Evangelist 



…And introduce our companies
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Altinity.Cloud Platform for 
ClickHouse 

Real-time data in the cloud, 
on Kubernetes, and on-prem

Fully managed Presto Service 
on AWS

Query your AWS S3 Data 
Lakes with SQL
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Let’s discuss data lake and 
real-time analytic approaches

Data Lakes & Real Time Analytics



What are data lake analytics?

Beyond 
Enterprise Data
IoT, Third-party, 
Telemetry, Event 

1000X 
More Data

Terabytes to 
Petabytes

Open & 
Flexible

Open Source, 
Open Formats

Reporting & 
Dashboarding

Data 
Science

In-data lake 
transformation

Data Lake
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What are real-time analytics?
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Rapid Data 
Ingest

(Millions of 
rows/sec.)

Financial 
Services

Network 
Management

Security Event & Incident 
Monitoring (SEIM) Observability Real-time 

Monitoring

Unaggregated source data

BI tools - Slicing & dicing queries

(Stable, sub-second response)

Aggregated 
data in views

APIs - Instant aggregates

(< 20ms response)
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How do you know which approach 
is best for you?

Data Lakes & Real Time Analytics



Presto: SQL 
Query Engine for 

big data
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Today’s Challenges for Data Engineers & Data Architects 

● Storage and Compute
● Diverse Data Sources
● Managing different SQL dialects
● Onboarding time
● Cost of proprietary systems
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What do we need for cloud based analytics?
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What do we need for cloud based analytics?
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What do we need for cloud based analytics?
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What do we need for cloud based analytics?
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Cloud Data Warehouse is an answer

14



Where can we save money?
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Where can we save money? Storage!
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Metadata tables -> Catalog
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Metadata tables -> Catalog
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You probably already use something else here
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May as well be Open Source!
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But what about SQL?
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Welcome to the Open SQL Data Lakehouse!
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What is Presto?
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● Open source, 
distributed SQL query 
engine for the data lake 
& lakehouse

● Designed from ground 
up for fast analytic 
queries against data of 
any size

● Query in place - no 
need to move data

● Federated querying - 
join data from different 
source formats



Outcome - Presto for Data Lake Analytics

● Storage-Compute segregation
● Query Federation 
● Unified SQL access
● Faster Onboarding and No Data Downtimes
● Better price performance
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Let’s look at an 
eCommerce app 

powered by 
Presto
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Open SQL Data Lakehouse for eCommerce: Powered by Presto
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Reporting & 
Dashboarding

Data 
Science

Data Governance

Unified SQL Engine

Ingestion Cloud Data Lakes

Batch

Streaming

Open SQL Data Lakehouse

Source Tables

Derived Tables



Presto Scalable Architecture
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Demo Time
1. Query S3 Data

2. Join AWS glue table and MySQL table with Presto
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Real-time 
Analytics with 
ClickHouse
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Real-time analytic challenges

● Load millions of rows per second from event stream fire hoses
● Fixed, low latency response to arbitrary slicing/dicing queries
● ~10ms response to requests from services
● Scale to very large datasets
● High cost efficiency

30



Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is a SQL Data Warehouse

It’s a popular engine for 
real-time analytics

ClickHouse

Event 
Streams

ELT

Object 
Storage

Interactive 
Graphics

Dashboards

APIs
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Seeing is believing
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Demo Time!



Round up the usual performance suspects
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Data 
Partitioning

Codecs

Compression Skip 
Indexes

Projections

Sharding

Vectorized Query

Data 
Types

Read 
Replicas

Tiered Storage

Primary key indexIn-RAM dictionaries 



“One Big Table” design: multiple entities in a single table

34

Restart
● msg_type=’restart’
● sensor_id
● time

Reading
● msg_type=’reading’
● sensor_id
● time
● temperature Error

● msg_type=’err’
● sensor_id
● time
● message



What does the sensor table look like?
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CREATE TABLE IF NOT EXISTS readings_zstd (
  sensor_id Int32 Codec(DoubleDelta, ZSTD(1)),
  sensor_type UInt16 Codec(ZSTD(1)),
  location LowCardinality(String) Codec(ZSTD(1)),
  time DateTime Codec(DoubleDelta, ZSTD(1)),
  date ALIAS toDate(time),
  temperature Decimal(5,2) Codec(T64, ZSTD(10))
) 
Engine = MergeTree
PARTITION BY toYYYYMM(time)
ORDER BY (location, sensor_id, time);

Optimized data 
types

Codecs + ZSTD 
compression

ALIAS column

Sorting by key 
columns + time

Time-based 
partitioning



Linear query scaling using -If combinators
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--Query over 1 Billion rows
set max_threads = 16;
SELECT
    toYYYYMM(time),
    countIf(msg_type = 'reading'),
    countIf(msg_type = 'restart'),
    min(temperature),
    round(avg(temperature)),
    max(temperature)
FROM test.readings_multi
WHERE sensor_id BETWEEN 0 and 10000
GROUP BY month ORDER BY month ASC;



msg_type sensor_id time temperature

sensor_id restart_timetime temperature
sensor_id restart_timetime temperature

What about joins within a big table schema?

Use case: join restarts with temperature readings

37

sensor_id uptimetime temperature

Restart times
msg_type
‘restart’ sensor_id time

Temperature readings

Temperatures after restart

msg_type sensor_id time temperature

JOIN key

msg_type
‘reading’ sensor_id time temperature



msg_type sensor_id time temperature
msg_type sensor_id time temperature

Aggregation can implement joins!
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sensor_id uptimetime temperature

Restart and temperature records

msg_type sensor_id time

msg_type sensor_id time temperature

Temperatures after restart

sensor_id

restart_time: t1

reading_time: [t1, t2, t3, t4, …] 

temp: [76.44, 90.39, 82.08, 48.12, ..]

236
236
236
236
…

t1
t2
t3
t4
...

76.44
90.39
82.08
48.12
...

30
90
150
210
...

GROUP BY
 key

Grouped array values

ARRAY JOIN to pivot 
on arrays



Finding the last restart is an aggregation task!
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236 2019-01-10 20:00:13 restart

sensor_id time msg_type 236 2019-01-10 21:07:56 restart

sensor_id time msg_type

236 2019-01-10 21:07:56 restart

sensor_id time msg_type

Merge

GROUP BY key

Max value Matching 
row value



Use materialized views to “index” data

Finding the last restart on a sensor
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Block lands in 
source table

Block(s) land 
in materialized 

view target 
table

SELECT
  sensor_id,
  max(time) AS time
FROM readings_multi
WHERE msg_type = 'restart' 
GROUP BY sensor_id

“Last point query”MergeTree Table

AggregatingMergeTree
 Table



Outcome - ClickHouse for Real-Time Analytics

● Convenient integration to ingest: event streams, object storage, ELT, …
● Fast response on unaggregated source data
● Pre-aggregated response within time to render a web pages server-side
● Scale resources to maintain constant response
● Cost-efficient user-facing tenant APIs and visualization
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Mixing and 
Matching
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Let’s look at how you might deploy 
these architectures together

Data Lakes & Real Time Analytics



Presto Clickhouse Connector
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Query Federation

Join AWS glue table and Clickhouse Table with Presto

select name, sum(totalprice) as total 
from clickhouse.ahana.customer AS c 
LEFT JOIN 
glue.ecom.orders AS o 
ON c.custkey=o.custkey 
GROUP BY name 
ORDER BY total DESC LIMIT 10;

45



ClickHouse can read data from S3
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S3 Object Storage

Parquet 
File

s3()
Table 

Function

SELECT 
  max(a),
  sum(b)
FROM s3(...)



Example of reading Parquet data in ClickHouse

SELECT max(temperature), min(temperature) 
FROM
s3('https://s3.us-east-1.amazonaws.com/.../readings*.parquet', 
'Parquet') 
WHERE sensor_type=1

max(temperature)|min(temperature)|
----------------+----------------+
          125.62|          -11.11|
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Wrap-up
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Summary points

● Data lakes with Presto gives data engineers & data architects more flexibility, 
better price performance and 1 unified interface for their data

● Real-time analytics with ClickHouse offer fast reaction and constant query 
response on rapidly arriving data

● You can mix approaches, too
○ Deploy Clickhouse with Presto to get access to your real-time data along with your other data 

sources and data lakes
○ Read data lake files directly from ClickHouse
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Thank you!
Questions?
https://altinity.com 
Altinity.Cloud
Contact Altinity

https://ahana.io
Ahana Cloud
Contact Ahana

https://altinity.com
https://altinity.com/contact/
https://ahana.io
https://ahana.io/ahana-cloud-demo-registration/


Quick, 
Iterative 

Exploration

Real-time analytics in action: service log management
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Question Answer

Why do node.js 
backends fail to 

process transactions? 

Slice and dice 
queries on detailed 

log data

Bug introduced in 
latest upgrade



And here’s the code…
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SELECT sensor_id, reading_time, temp, reading_time, 
  reading_time - restart_time AS uptime
FROM (
WITH toDateTime('2019-04-17 11:00:00') as start_of_range
SELECT sensor_id, groupArrayIf(time, msg_type = 'reading') AS 
reading_time,
    groupArrayIf(temperature, msg_type = 'reading') AS temp,
    anyIf(time, msg_type = 'restart') AS restart_time
FROM test.readings_multi rm
WHERE (sensor_id = 2555)
  AND time BETWEEN start_of_range AND start_of_range + 600
GROUP BY sensor_id)
ARRAY JOIN reading_time, temp Not everyone’s cup of tea, 

but it works!!!
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It is a capital mistake to theorize 
before one has data. 

Sherlock Holmes 
(aka Arthur Conan Doyle)

A Scandal in Bohemia

A famous data scientist on the subject of data…



ClickHouse Server Architecture
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Query Parser Query Interpreter Query PipelineQuery

Columnar data in block storage Columnar data in object 
storage

OS Page Cache

Kafka Event 
Stream

MergeTree AggregatingMergeTree S3 Kafka

Table Engines

Table Primary 
Key Indexes

Column blocks 
from storage

Joined data 
(hash tables)

Intermediate Results 
(hash tables)


