
© 2022 Altinity, Inc.

Deep Dive on
ClickHouse Sharding
and Replication
Robert Hodges and Altinity Engineering
22 September 2022

1© 2202 Altinity, Inc.

© 2022 Altinity, Inc.

Let’s make some introductions

ClickHouse support and services including Altinity.Cloud
Authors of Altinity Kubernetes Operator for ClickHouse

and other open source projects

Us
Database geeks with centuries

of experience in DBMS and
applications

You
Applications developers

looking to learn about
ClickHouse

2

https://altinity.com/cloud-database/
https://github.com/Altinity/clickhouse-operator

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

What’s a
ClickHouse?

3

© 2022 Altinity, Inc.

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is a SQL Data Warehouse

It’s the core engine for
real-time analytics

ClickHouse

Event
Streams

ELT

Object
Storage

Interactive
Graphics

Dashboards

APIs

4

© 2022 Altinity, Inc.

Distributed data is deeper than it looks

5

Width:
2 meters

Depth:
60 meters

“The
Bolton
Strid”

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Introducing
sharding and

replication

6

© 2022 Altinity, Inc.

Clickhouse nodes can scale vertically

Network-
Attached
Storage

CPU

RAM

Host

7

© 2022 Altinity, Inc.

Clickhouse nodes can scale vertically
CPU

RAM

Host
Network-
Attached
Storage

8

© 2022 Altinity, Inc.

Clusters introduce horizontal scaling

Shards

Replicas

Host Host Host

Host

Replicas improve read
IOPs and concurrency

Shards add write
IOPS

9

© 2022 Altinity, Inc.

Different sharding and replication patterns

Shard 1

Shard 3

Shard 2

Shard 4

 All Sharded

Data sharded 4
ways without

replication

Replica 1

Replica 3

Replica 2

Replica 4

All Replicated

Data replicated 4
times without

sharding

Shard 1
Replica 1

Shard 1
Replica 2

Shard 2
Replica 1

Shard 2
Replica 2

Sharded and
Replicated

Data sharded 2
ways and

replicated 2 times

10

© 2022 Altinity, Inc.

MergeTree tables support replication

MergeTree

SummingMergeTree

AggregatingMergeTree

CollapsingMergeTree

VersionedCollapsing
MergeTree

ReplicatedMergeTree

ReplicatedSummingMergeTree

ReplicatedAggregatingMergeTree

ReplicatedCollapsingMergeTree

ReplicatedVersionedCollapsing
MergeTree

ReplacingMergeTree ReplicatedReplacingMergeTree

Source data

Aggregated
data; single
row per group

Evolving data

11

© 2022 Altinity, Inc.

How replication works
INSERT

Replicate

 ClickHouse Node 1

Table: ontime
(Parts)

ReplicatedMergeTree

:9009

:9443 ClickHouse Node 2

Table: ontime
(Parts)

ReplicatedMergeTree

:9009

:9443

zookeeper-1

ZNodes

:2181 zookeeper-2

ZNodes

:2181 zookeeper-3

ZNodes

:2181

12

© 2022 Altinity, Inc.

What is replicated?

Replicated statements Non-replicated statements

● INSERT
● ALTER TABLE

exceptions: FREEZE, MOVE TO
DISK, FETCH

● OPTIMIZE
● TRUNCATE

● CREATE table
● DROP table
● RENAME table
● DETACH table
● ATTACH table

Replicated*MergeTree ONLY

13

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Building
distributed

schema

14

© 2022 Altinity, Inc.

Example of a distributed data set with shards and replicas

clickhouse-0

ontime
_local

airports

ontime

clickhouse-1

ontime
_local

airports

ontime

clickhouse-2

ontime
_local

airports

ontime

clickhouse-3

ontime
_local

airports

ontime

Distributed
table

(No data)

Sharded,
replicated

table
(Partial data)

Fully
replicated

table
(All data)

15

© 2022 Altinity, Inc.

Step 1: A sharded, replicated fact table
CREATE TABLE IF NOT EXISTS `ontime_local` (
 `Year` UInt16 CODEC(DoubleDelta, ZSTD(1)),
 `Quarter` UInt8,
 `Month` UInt8,
 `DayofMonth` UInt8,
 `DayOfWeek` UInt8, ...
) Engine=ReplicatedMergeTree(
'/clickhouse/{cluster}/tables/{shard}/{database}/ontime_local',
'{replica}')
PARTITION BY toYYYYMM(FlightDate)
ORDER BY (FlightDate, `Year`, `Month`, DepDel15)

Replication is at the table level! Use a Replicated% Engine

16

© 2022 Altinity, Inc.

Step 2: A distributed table to find data
CREATE TABLE IF NOT EXISTS ontime
AS ontime_local
ENGINE = Distributed(
 '{cluster}', currentDatabase(), ontime_local, rand())

Cluster
layout

Database Table Sharding
key

(optional)

17

© 2022 Altinity, Inc.

Step 3: A fully replicated dimension table
CREATE TABLE IF NOT EXISTS airports
AS default.dot_airports
Engine=ReplicatedMergeTree(
 '/clickhouse/{cluster}/tables/all/{database}/airports',
'{replica}')
PARTITION BY tuple()
PRIMARY KEY AirportID
ORDER BY AirportID

Don’t bother with partitions
for small tables

Resolves to current
database

18

© 2022 Altinity, Inc.

Macros help CREATE TABLE ON CLUSTER

/etc/clickhouse-server/config.d/macros.xml:
<clickhouse>
 <macros>
 <all-sharded-shard>2</all-sharded-shard>
 <cluster>demo</cluster>
 <shard>0</shard>
 <replica>clickhouse-0-1</replica>
 </macros>
</clickhouse>

select * from system.macros

Replica names
should be unique
per host

19

© 2022 Altinity, Inc.

What does ON CLUSTER do?
ON CLUSTER executes a command over a set of nodes

CREATE TABLE IF NOT EXISTS `ontime_local` ON CLUSTER `{cluster}` ...

DROP TABLE IF EXISTS `ontime_local` ON CLUSTER `{cluster}` ...

ALTER TABLE `ontime_local` ON CLUSTER `{cluster}` ...

20

© 2022 Altinity, Inc.

How does ON CLUSTER know where to go?
/etc/clickhouse-server/config.d/remote_servers.xml:
<clickhouse>
 <remote_servers>
 <demo>
 <!-- <secret>top secret</secret> -->
 <shard>
 <replica><host>10.0.0.71</host><port>9000</port></replica>
 <replica><host>10.0.0.72</host><port>9000</port></replica>
 <internal_replication>true</internal_replication>
 </shard>
 <shard>
 . . .
 </shard>
 </demo>
 </remote_servers>
</clickhouse>

“It’s a cluster
because I said so!”

Cluster name

21

Shared secret

© 2022 Altinity, Inc.

List layouts using system.clusters

-- Find name and hosts in each layout
SELECT
 cluster,
 groupArray(concat(host_name,':',toString(port))) AS hosts
FROM system.clusters
GROUP BY cluster ORDER BY cluster

22

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Loading and
querying data

23

© 2022 Altinity, Inc.

Data loading: Distributed vs. local INSERTs

ontime
_localontime

Insert via
distributed

table
Insert directly

to shards

ontime
_localontime

ontime
_localontime

ontime
_localontime

Data
Pipeline Data

Pipeline

Applications may have to
be more intelligent

May require more
resources

(Queue)

24

© 2022 Altinity, Inc.

INSERT into a distributed vs. local table
-- Insert into distributed table
INSERT INTO ontime VALUES
(2017,1,1,1,7,'2017-01-01','AA',19805,...),
(2017,1,1,1,7,'2017-01-01','AA',19805,...),
...

-- Insert into a local table
INSERT INTO ontime_local VALUES
(2017,1,1,1,7,'2017-01-01','AA',19805,...),
(2017,1,1,1,7,'2017-01-01','AA',19805,...),
...

25

© 2022 Altinity, Inc.

How does a distributed INSERT work?

ontime
_localontimeInsert via

distributed table

ontime
_localontime

ontime
_localontime

Data
Pipeline

(Queue)

insert_distributed_sync:

● 0 = async propagation
● 1 = sync propagation ontime

_localontime

Thread Pool

select * from
system.distribution_queue

replication

26

© 2022 Altinity, Inc.

Options for processing INSERTs

● Local vs distributed data insertion
○ INSERT to local table – no need to sync, larger blocks, faster
○ INSERT to Distributed table – sharding by ClickHouse
○ CHProxy -- distributes transactions across nodes, only works with HTTP

connections

● Asynchronous (default) vs synchronous insertions
○ insert_distributed_sync - Wait until batches make it to local tables
○ insert_quorum, select_sequential_consistency – Wait until replicas sync

27

© 2022 Altinity, Inc.

How do distributed SELECTs work?

ontime
_localontime

Application

ontime
_localontime

ontime
_localontime

ontime
_localontime

Application

Innermost
subselect is
distributed

AggregateState
computed

locally
Aggregates
merged on

initiator node

28

© 2022 Altinity, Inc.

Queries are pushed to all shards

SELECT Carrier, avg(DepDelay) AS Delay
FROM ontime
GROUP BY Carrier ORDER BY Delay DESC

SELECT Carrier, avg(DepDelay) AS Delay
FROM ontime_local
GROUP BY Carrier ORDER BY Delay DESC

29

© 2022 Altinity, Inc.

ClickHouse pushes down JOINs by default

SELECT o.Dest d, a.Name n, count(*) c, avg(o.ArrDelayMinutes) ad
 FROM default.ontime o
 JOIN default.airports a ON (a.IATA = o.Dest)
 GROUP BY d, n HAVING c > 100000 ORDER BY d DESC
 LIMIT 10

SELECT Dest AS d, Name AS n, count() AS c, avg(ArrDelayMinutes) AS
ad
 FROM default.ontime_local AS o
 ALL INNER JOIN default.airports AS a ON a.IATA = o.Dest
 GROUP BY d, n HAVING c > 100000 ORDER BY d DESC LIMIT 10

30

© 2022 Altinity, Inc.

...Unless the left side “table” is a subquery

SELECT d, Name n, c AS flights, ad
FROM
(
 SELECT Dest d, count(*) c, avg(ArrDelayMinutes) ad
 FROM default.ontime
 GROUP BY d HAVING c > 100000
 ORDER BY ad DESC
) AS o
LEFT JOIN airports ON airports.IATA = o.d
LIMIT 10

Remote
Servers

31

© 2022 Altinity, Inc.

It’s more complex when multiple tables are distributed

select foo from T1 where a in (select a from T2)

distributed_product_mode=?

local
select foo
from T1_local
where a in (
 select a
 from T2_local)

allow
select foo
from T1_local
where a in (
 select a
 from T2)

global
create temporary table
tmp Engine = Set
AS select a from T2;

select foo from
T1_local where a in
tmp;

(Subquery runs on
local table)

(Subquery runs on
distributed table) (Subquery runs on initiator;

broadcast to local temp table)
32

© 2022 Altinity, Inc.

What’s actually happening with queries? Let’s find out!

SELECT hostName() host, event_time, query_id,
 is_initial_query AS initial,
 if(is_initial_query, '', initial_query_id) as initial_q,
 query
FROM cluster('{cluster}', system.query_log) AS st
WHERE type = 'QueryFinish' AND has(databases, 'test')
ORDER BY st.event_time DESC LIMIT 25

33

© 2022 Altinity, Inc.

Thinking about distributed data and joins

Large
id
1
2
…
…
1000

Small
id
1
…
100

Large
id
1
2
…
…
1000

Large
id
1
2
…
…
1000

Large
id
1001
1002
…
…
2000

Large
id
2001
2002
…
…
2000

Large
id
1001
1002
…
…
2000

Small
id
1
…
100

Shard 1 Shard 2 Shard 1 Shard 2

“Bucketing Model”“Big Table Model”

All keys replicated Matching keys in
each bucket

34

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Tricks to query
distributed tables

35

© 2022 Altinity, Inc.

Use remote() to select from another node

SELECT count()
FROM remote('host-2', currentDatabase(), 'ontime_ref')

SELECT count()
FROM remoteSecure('host-2', currentDatabase(), 'ontime_ref')

┌───count()─┐
│ 196508419 │
└───────────┘

-- You can insert too, with FUNCTION keyword.
INSERT INTO FUNCTION remote(host, database, table, login,
password)
VALUES . . .

36

© 2022 Altinity, Inc.

More remote query tricks!

SELECT hostName() AS h, count() AS c FROM sdata GROUP BY h
┌─h─────────────────────────┬───c─┐
│ chi-test-rh-test-rh-1-0-0 │ 492 │
│ chi-test-rh-test-rh-0-0-0 │ 508 │
└───────────────────────────┴─────┘

SELECT hostName() AS h, count() AS c
FROM remote('chi-test-rh-test-rh-{0,1}-{0,1}', default, sdata)
GROUP BY h
┌─h─────────────────────────┬────c─┐
│ chi-test-rh-test-rh-1-0-0 │ 984 │
│ chi-test-rh-test-rh-1-1-0 │ 984 │
│ chi-test-rh-test-rh-0-1-0 │ 1016 │
│ chi-test-rh-test-rh-0-0-0 │ 1016 │
└───────────────────────────┴──────┘

Distributed table

Remote query all 4
hosts

37

© 2022 Altinity, Inc.

cluster() distributes queries dynamically

SELECT
 hostName() AS host, count() AS tables
FROM cluster('{cluster}', system.tables)
WHERE database = 'default'
GROUP BY host

┌─host──────────────────────┬─tables─┐
│ chi-test-rh-test-rh-1-0-0 │ 2 │
│ chi-test-rh-test-rh-0-1-0 │ 2 │
└───────────────────────────┴────────┘

38

© 2022 Altinity, Inc.

clusterAllReplicas() goes to every node

SELECT
 hostName() AS host, count() AS tables
FROM clusterAllReplicas('{cluster}', system.tables)
WHERE database = 'default'
GROUP BY host

┌─host──────────────────────┬─tables─┐
│ chi-test-rh-test-rh-1-0-0 │ 2 │
│ chi-test-rh-test-rh-1-1-0 │ 2 │
│ chi-test-rh-test-rh-0-1-0 │ 2 │
│ chi-test-rh-test-rh-0-0-0 │ 2 │
└───────────────────────────┴────────┘

39

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Scaling up

40

© 2022 Altinity, Inc.

Load testing and capacity planning made simple…

1. Establish single node baseload
● Use production data
● Max out SELECT & INSERT capacity with load tests
● Adjust schema and queries, retest

2. Add replicas to increase SELECT capacity
3. Add shards to increase INSERT capacity

41

© 2022 Altinity, Inc.

Selecting the sharding key

Shard 2 Shard 3Shard 1

Randomized Key, e.g.,
cityHash64(Url)

Must query
all shards

Nodes are
balanced

Shard 3

Specific Key e.g.,
cityHash64(TenantId)

Unbalanced
nodes

Queries can
skip shards

Shard 2Shard 1

Easier to
add nodes

Hard to
add nodes

42

© 2022 Altinity, Inc.

Options for shard rebalancing

● INSERT INTO new_cluster SELECT FROM old_cluster
○ Clickhouse-copier automates this

● Use (undocumented) ALTER TABLE MOVE PART TO SHARD
○ Example: ALTER TABLE test_move MOVE PART 'all_0_0_0' TO SHARD

'/clickhouse/shard_1/tables/test_move

● Move parts manually
○ ALTER TABLE FREEZE PARTITION
○ rsync to new host
○ ALTER TABLE ATTACH PARTITION
○ Drop original partition

43

https://github.com/ClickHouse/ClickHouse/blob/master/tests/integration/test_part_moves_between_shards/test.py

© 2022 Altinity, Inc.

Bi-level sharding combines both approaches

cityHash64(Url)

Shard 2 Shard 3Shard 1

TenantId

Shard 2Shard 1

cityHash64(Url) cityHash64(Url)

Shard 2Shard 1

Tenant-Group-1 Tenant-Group-2 Tenant-Group-3

Application chooses groupDistributed table

44

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Wrap-up and more
information

45

© 2022 Altinity, Inc.

Where is the documentation?

ClickHouse official docs – https://clickhouse.com/docs/

Altinity Blog – https://altinity.com/blog/

Altinity Youtube Channel –
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA

Altinity Knowledge Base – https://kb.altinity.com/

ClickHouse Capacity Planning by Mik Kocikowski of CloudFlare

Meetups, other blogs, and external resources. Use your powers of Search!

46

https://clickhouse.com/docs/
https://altinity.com/blog/
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA
https://kb.altinity.com/
https://www.slideshare.net/Altinity/clickhouse-capacity-planning-for-olap-workloads-mik-kocikowski-of-cloudflare

© 2022 Altinity, Inc.

Where can I get help?

Telegram - ClickHouse Channel

Slack

● ClickHouse Public Workspace - clickhousedb.slack.com
● Altinity Public Workspace - altinitydbworkspace.slack.com

Education - Altinity ClickHouse Training

Support - Altinity offers support for ClickHouse in all environments

47

https://t.me/clickhouse_en
https://altinity.com/clickhouse-training/
https://altinity.com/support/

© 2022 Altinity, Inc. 48© 2202 Altinity, Inc.

Thank you and
good luck!
Website: https://altinity.com
Email: info@altinity.com
Slack: altinitydbworkspace.slack.com

Altinity.Cloud

Altinity Support

Altinity Stable
Builds

We’re hiring!

https://altinity.com
mailto:info@altinity.com
https://join.slack.com/t/altinitydbworkspace/shared_invite/zt-192cbjbrn-jMAk4aVGZSsvhv_DGUrtFw
https://altinity.com/cloud-database/
https://altinity.com/24x7-support/
https://docs.altinity.com/altinitystablebuilds/
https://docs.altinity.com/altinitystablebuilds/
https://altinity.com/careers/

