
© 2022 Altinity, Inc.

Size Matters
Best Practices for Trillion Row
Datasets in ClickHouse
Robert Hodges and Altinity Engineering
10 August 2022

1© 2022 Altinity, Inc.

© 2022 Altinity, Inc.

Let’s make some introductions

ClickHouse support and services including Altinity.Cloud
Authors of Altinity Kubernetes Operator for ClickHouse

and other open source projects

Robert Hodges
Database geek with 30+ years

on DBMS systems. Day job:
Altinity CEO

Altinity Engineering
Database geeks with centuries

of experience in DBMS and
applications

2

https://altinity.com/cloud-database/
https://github.com/Altinity/clickhouse-operator

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Foundations

3

© 2022 Altinity, Inc.

Understands SQL

Runs on bare metal to cloud

Shared nothing architecture

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

ClickHouse is a SQL Data Warehouse

It’s a popular engine for
real-time analytics

ClickHouse

Event
Streams

ELT

Object
Storage

Interactive
Graphics

Dashboards

APIs

4

© 2022 Altinity, Inc.

Seeing is believing

5

Demo Time!

© 2022 Altinity, Inc.

Some definitions to guide discussion

Enabling Fast, Cost-Efficent End User
Access to Trillion-Row Datasets

6

Consistent, sub-second response
that scales linearly with resources

Deliver query results at costs that
are low and predictable

Market TICK data, DNS queries, weblogs, network flow
logs, service logs, CDN telemetry, real-time ad bids, …

© 2022 Altinity, Inc.

Quick,
Iterative

Exploration

Why do we need fast access to source data?

7

Question Answer

Why do temperature
sensors fail

intermittently?

Slice and dice
queries on detailed

sensor data

Bad firmware
upgrade

© 2022 Altinity, Inc.

Principles for large datasets in ClickHouse

8

Reduce queries to a single scan

Reduce I/O

Parallelize query

Lean on aggregation (instead of joins)

Index information with materialized views

© 2022 Altinity, Inc.

The key: One table* to rule them all

9

Unaggregated
table data

Keep intermediate
results in RAM

Minimize I/O Overhead

Maximize applied CPU

Parallelize everything

Results

Query

And make the scans really fast

* Joins are OK! Just not
big ones.

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Basic design for 1
trillion row tables

10

© 2022 Altinity, Inc.

ClickHouse Server Architecture

11

Query Parser Query Interpreter Query PipelineQuery

Table Primary
Key Indexes

Scanned
column

blocks from
storage

Joined
data (hash

tables)

Intermediate
Query Results
(hash tables)

Columnar data in block storage Columnar data in object
storage

OS Page Cache

© 2022 Altinity, Inc.

Round up the usual performance suspects

12

Data
Partitioning

Codecs

Compression Skip
Indexes

Projections

Sharding

Distributed Query

Data
Types

Read
Replicas

Tiered Storage

Primary key index
In-RAM dictionaries

© 2022 Altinity, Inc.

Name: 201905_510_815_3

MergeTree table organization in ClickHouse

13

Name: 201901_208_474_4

Name: 201901_1_207_3

Parts

Sparse
index

Sorted, compressed,
indexed column

Skip indexes

Minmax

Bloom

© 2022 Altinity, Inc.

CREATE TABLE IF NOT EXISTS readings_unopt (
 sensor_id Int64,
 sensor_type Int32,
 location String,
 time DateTime,
 date Date DEFAULT toDate(time),
 reading Float32
) Engine = MergeTree
PARTITION BY tuple()
ORDER BY tuple();

Let’s start by making an experimental table!

14

Sub-optimal
datatypes!

No codecs!

No partitioning
or ordering!

© 2022 Altinity, Inc.

Here is a better experimental table with lower I/O cost

15

CREATE TABLE IF NOT EXISTS readings_zstd (
 sensor_id Int32 Codec(DoubleDelta, ZSTD(1)),
 sensor_type UInt16 Codec(ZSTD(1)),
 location LowCardinality(String) Codec(ZSTD(1)),
 time DateTime Codec(DoubleDelta, ZSTD(1)),
 date ALIAS toDate(time),
 temperature Decimal(5,2) Codec(T64, ZSTD(10))
)
Engine = MergeTree
PARTITION BY toYYYYMM(time)
ORDER BY (location, sensor_id, time);

Optimized data
types

Codecs + ZSTD
compression

ALIAS column

Sorting by key
columns + time

Time-based
partitioning

© 2022 Altinity, Inc.

On-disk table size for different schemas

16

© 2022 Altinity, Inc.

ClickHouse single node query model

17

Query

Result

ClickHouse Server

Parse/Plan

Merge/Sort

Vectorized
Scan

In-RAM
Hash

Tables

Parts in Storage

© 2022 Altinity, Inc.

Exploring linear local CPU scaling

18

–Query over 1.01 Billion rows
set max_threads = 16;
SELECT
 toYYYYMM(time) AS month,
 countIf(msg_type = 'reading') AS
readings,
 countIf(msg_type = 'restart') AS
restarts,
 min(temperature) AS min,
 round(avg(temperature)) AS avg,
 max(temperature) AS max
FROM test.readings_multi
WHERE sensor_id BETWEEN 0 and 10000
GROUP BY month ORDER BY month ASC;

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Ingesting data
into large tables

19

© 2022 Altinity, Inc.

Pattern: multiple entities in a single table

Large table joins are an
anti-pattern in low-latency apps

20

Restart
● msg_type=’restart’
● sensor_id
● time

Reading
● msg_type=’reading’
● sensor_id
● time
● temperature Error

● msg_type=’err’
● sensor_id
● time
● message

© 2022 Altinity, Inc.

Many apps keep entity sources for future flexibility

21

m
sg_type

tem
perature

tim
e

date

{
 "sensor_id": "0",
 "time": "2019-01-01 00:00:00",
 "msg_type": "reading",
 "temperature": "46.31",
 "message": "",
 "device_type": "0",
 "firmware": "frx23.0.22"
}

m
essage

sensor_type
sensor_idMaterialized

columns
Source
data

1.34 bytes/row 4.14 bytes/row, ~96% compression with ZSTD(1)

© 2022 Altinity, Inc.

Schema for a table based on multi-entity JSON

22

CREATE TABLE IF NOT EXISTS readings_multi_json (
 sensor_id Int32 Codec(DoubleDelta, LZ4),
 sensor_type UInt8,
 time DateTime Codec(DoubleDelta, LZ4),
 date ALIAS toDate(time),
 msg_type enum('reading'=1, 'restart'=2, 'err'=3),
 temperature Decimal(5,2) Codec(T64, LZ4),
 message String DEFAULT '',
 json String DEFAULT ''
) Engine = MergeTree
PARTITION BY toYYYYMM(time)
ORDER BY (msg_type, sensor_id, time);

Codecs + LZ4
compression

Sort by msg_type,
sensor, time

Discriminator
column

String column
for JSON data

© 2022 Altinity, Inc.

Loading raw data into large systems

Nginx Logs
Sensor data readings_etl

(Null Engine)

readings_multi
(Mergetree

Engine)
MV

INSERT
INTO

Enrich data with
materialized view

© 2022 Altinity, Inc.

ClickHouse makes it easy to materialize columns

24

ALTER TABLE readings_multi_json
 ADD COLUMN IF NOT EXISTS firmware String
 DEFAULT JSONExtractString(json, 'firmware')
;

ALTER TABLE readings_multi_json
 UPDATE firmware = firmware WHERE 1=1
;

© 2022 Altinity, Inc.

…But you can also index and query JSON directly

25

ALTER TABLE readings_multi_json
 ADD INDEX jsonbf json TYPE tokenbf_v1(8192, 3, 0)
 GRANULARITY 1;

ALTER TABLE readings_multi_json
 MATERIALIZE INDEX jsonbf;

-- Count matches on column.
SELECT count()
FROM readings_multi_json
WHERE
 firmware = 'frx23ID0000x2532'

-- Count token matches in JSON.
SELECT count()
FROM readings_multi_json
WHERE
 hasToken(json,'frx23ID0000x2532')

Bloom filter tuning
is complicated!

© 2022 Altinity, Inc.

Results are good if you have high cardinality values

26

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Unique
ClickHouse tricks
for large datasets

27

© 2022 Altinity, Inc.

How can we make queries fast on large data sets?

28

Create queries that work
in a single scan without

large-table joins

© 2022 Altinity, Inc.

Hint: Aggregation runs in a single pass

= 2

Sum = 6
Count = 3

1 2 3 1 3 5 0 5 0 0

Sum = 9
Count = 3

Sum = 5
Count = 4

6 + 9 + 5

3 + 3 + 4

29

No need to
move data

Parallelizes!

Intermediate
results are
reusable

© 2022 Altinity, Inc.

What about queries over all entities?

30

SELECT toYYYYMM(time) AS month,
 countIf(msg_type = 'reading') AS readings,
 countIf(msg_type = 'restart') AS restarts,
 min(temperature) AS min,
 round(avg(temperature)) AS avg, max(temperature) AS max
FROM test.readings_multi WHERE sensor_id = 3
GROUP BY month ORDER BY month ASC

┌──month─┬─readings─┬─restarts─┬───min─┬─avg─┬────max─┐
│ 201901 │ 44640 │ 1 │ 0 │ 75 │ 118.33 │
│ 201902 │ 40320 │ 0 │ 68.09 │ 81 │ 93.98 │
│ 201903 │ 15840 │ 0 │ 73.19 │ 84 │ 95.3 │
└────────┴──────────┴──────────┴───────┴─────┴────────┘

Use conditional
aggregation!

© 2022 Altinity, Inc.

msg_type sensor_id time temperature

sensor_id restart_timetime temperature
sensor_id restart_timetime temperature

What about joins on distributed data?

Use case: join restarts with temperature readings

31

sensor_id uptimetime temperature

Restart times
msg_type
‘restart’ sensor_id time

Temperature readings

Temperatures after restart

msg_type sensor_id time temperature

JOIN key

msg_type
‘reading’ sensor_id time temperature

© 2022 Altinity, Inc.

msg_type sensor_id time temperature
msg_type sensor_id time temperature

Aggregation can implement joins!

32

sensor_id uptimetime temperature

Restart and temperature records

msg_type sensor_id time

msg_type sensor_id time temperature

Temperatures after restart

sensor_id

restart_time: t1

reading_time: [t1, t2, t3, t4, …]

temp: [76.44, 90.39, 82.08, 48.12, ..]

236
236
236
236
…

t1
t2
t3
t4
...

76.44
90.39
82.08
48.12
...

30
90
150
210
...

GROUP BY
 key

Grouped array values

ARRAY JOIN to pivot
on arrays

© 2022 Altinity, Inc.

And here’s the code…

33

SELECT sensor_id, reading_time, temp, reading_time,
 reading_time - restart_time AS uptime
FROM (
WITH toDateTime('2019-04-17 11:00:00') as start_of_range
SELECT sensor_id, groupArrayIf(time, msg_type = 'reading') AS
reading_time,
 groupArrayIf(temperature, msg_type = 'reading') AS temp,
 anyIf(time, msg_type = 'restart') AS restart_time
FROM test.readings_multi rm
WHERE (sensor_id = 2555)
 AND time BETWEEN start_of_range AND start_of_range + 600
GROUP BY sensor_id)
ARRAY JOIN reading_time, temp Not everyone’s cup of tea,

but it works!!!

© 2022 Altinity, Inc.

How about locating key events in tables?

34

When was the
last restart on
sensor 236?

SELECT message
FROM readings_multi
WHERE (msg_type, sensor_id, time) IN
 (SELECT msg_type, sensor_id, max(time)
 FROM readings_multi
 WHERE msg_type = 'restart'
 AND sensor_id = 236
 GROUP BY msg_type, sensor_id)

Expensive on large
datasets!

© 2022 Altinity, Inc.

Finding the last restart is an aggregation task!

35

236 2019-01-10 20:00:13 restart

sensor_id time msg_type 236 2019-01-10 21:07:56 restart

sensor_id time msg_type

236 2019-01-10 21:07:56 restart

sensor_id time msg_type

Merge

GROUP BY key

Max value Matching
row value

© 2022 Altinity, Inc.

Use materialized views to “index” data

Finding the last restart on a sensor

36

Block lands in
source table

Block(s) land
in materialized

view target
table

SELECT
 sensor_id,
 max(time) AS time
FROM readings_multi
WHERE msg_type = 'restart'
GROUP BY sensor_id

“Last point query”MergeTree Table

AggregatingMergeTree
 Table

© 2022 Altinity, Inc.

And here’s code for the materialized view…

37

CREATE TABLE sensor_last_restart_agg (
 sensor_id Int32,
 time SimpleAggregateFunction(max, DateTime),
 msg_type AggregateFunction(argMax, String, DateTime)
)
ENGINE = AggregatingMergeTree()
PARTITION BY tuple() ORDER BY sensor_id

CREATE MATERIALIZED VIEW sensor_last_restart
TO sensor_last_restart_agg AS SELECT
 sensor_id, max(time) AS time,
 argMaxState(msg_type, time) AS msg_type
FROM readings_multi
WHERE msg_type = 'restart' GROUP BY sensor_id

SimpleAggregateFunction
simplifies insert and query

tuple() is a dubious choice!

© 2022 Altinity, Inc.

Comparison of source table to typical materialized view

38

© 2022 Altinity, Inc. © 2022 Altinity, Inc.

Wrap-up

39

© 2022 Altinity, Inc.

Learnings from large ClickHouse installations

Use a single large table to hold all entities

Make sound implementation choices to get baseline performance

Include source data for future flexibility without moving data

Aggregation is a secret ClickHouse power: use it to scan, join, index data

Your reward: Linear scaling, high cost-efficiency, and happy users

40

© 2022 Altinity, Inc.

Other important techniques for big data

Sharding and replication

Tiered storage

Object storage

Approximate queries using sampling and approximate uniqs (lighter aggregation)

41

© 2022 Altinity, Inc.

Where is the documentation?

ClickHouse official docs – https://clickhouse.com/docs/

Altinity Blog – https://altinity.com/blog/

Altinity Youtube Channel –
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA

Altinity Knowledge Base – https://kb.altinity.com/

Meetups, other blogs, and external resources. Use your powers of Search!

42

https://clickhouse.com/docs/
https://altinity.com/blog/
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA
https://kb.altinity.com/

© 2022 Altinity, Inc.

Thank you!
Questions?
https://altinity.com

43

Altinity.Cloud

Altinity Support

Altinity Stable
Builds

We’re hiring!

https://altinity.com

