Size

Best Practices 10 i,
Datasets in ClickHouse

Robert Hodges and Altinity Engji
10 August 2022

‘f’i Altinity © 2022 Altinity, Inc. 1

L et's make some introductions

_

Robert Hodges

Database geek with 30+ years
on DBMS systems. Day job:

Altinity CEO

J

g Altinity Engineering

Database geeks with centuries

_

of experience in DBMS and
applications

J

€% Altinity

ClickHouse support and services including Altinity.Cloud
Authors of Altinity Kubernetes Operator for ClickHouse

and other open source projects

£\ Altinity

© 2022 Altinity, Inc.

https://altinity.com/cloud-database/
https://github.com/Altinity/clickhouse-operator

-oundations

n Altinity © 2022 Altinity, Inc.

ClickHouse is a SQOL Data Warehouse
Understands SQL

Event Dashboards
Runs on bare metal to cloud Streams \ /
ClickHouse
i i Interactive

Shared nothing architecture ErT— O 0 —> Graphics
Stores data in columns . D80 \

Object APls

Storage

Parallel and vectorized execution

Scales to many petabytes It's a popular engine for

real-time analytics
Is Open source (Apache 2.0)

£\ Altinity © 2022 Altinity, Inc.

Seeing is believing

Demo Time!

£\ Altinity © 2022 Altinity, Inc.

Some definitions to guide discussion

Consistent, sub-second response Deliver query results at costs that
that scales linearly with resources are low and predictable

N <

Enabling Fast, Cost-Efficent End User
Access to Trillion-Row Datasets

/

Market TICK data, DNS queries, weblogs, network flow
logs, service logs, CDN telemetry, real-time ad bids, ...

N\ Altinity © 2022 Altinity, Inc.

Why do we need fast access to source data?

Quick,

I I

Exploration

Why do temperature Slice and dice)
X) . Bad firmware
sensors fail queries on detailed uparade
intermittently? sensor data P9

N\ Altinity © 2022 Altinity, Inc.

Principles for large datasets in ClickHouse

Reduce queries to a single scan
Reduce I/0

Parallelize query

Lean on aggregation (instead of joins)

Index information with materialized views

n Altinity © 2022 Altinity, Inc.

The key: One table* to rule them all

And make the scans really fast

3) Maximize applied CPU

Query [> |
5 i Minimize I/O Overhead

Keep intermediate Unaggregated
results in RAM . table data |
3) ' '

Results <: ; * Joins are OK! Just not

_________________________ big ones.

Parallelize everything
£\ Altinity © 2022 Altinity, Inc.

Basic design -

or

trillion row ta

£\ Altinity

oles

© 2022 Altinity, Inc.

10

ClickHouse Server Architecture

Query —

—» Query Parser |——®| Query Interpreter

T ' ""Scanned ' | . .
I . I ' 1 ' Joined

1 Table Primary 1 I column : data (hash

I Key Indexes ! | blocks from ! |

! ! ! tables)

e e - I ' _storage _ .+ L ______

P> Query Pipeline

: Intermediate :
' Query Results |
i (hash tables) |

£\ Altinity

Columnar data in block storage

Columnar data in object
storage

© 2022 Altinity, Inc.

11

Round up the usual performance suspects

Codecs Sharding
Data Read
Types Replicas

Data Compression Skip Projections

Partitioni Tiered Storage Ind

artitioning s neexes Distributed Query

In-RAM dictionaries . .
0\ Altinity o2 atmy, . PYiMary key index 12

MergeTree table organization in ClickHouse

£\ Altinity

Name: 201901_1 207 3

Name: 201901_208_474_4

Name: 201905_510_815_3

Skip indexes

Minmax

Bloom

Sparse
index

© 2022 Altinity, Inc.

13

Let's start by making an experimental table!

CREATE TABLE IF NOT EXISTS readings_unopt (
sensor id Inté4, Sub-optimal
sensor type Int32, datatypes!
location String,
time DateTime,
date Date DEFAULT toDate(time), No codecs!
reading Float32
) Engine = MergeTree
PARTITION BY tuple() No partitioning
ORDER BY tuple(); or ordering!

n Altinity © 2022 Altinity, Inc. 14

Here is a better experimental table with lower /O cost

CREATE TABLE IF NOT EXISTS readings_zstd (Gptimized data
sensor id Int32 Codec (DoubleDelta, ZSTD(1)), types
sensor type UIntlé Codec(ZSTD(1l)),
location LowCardinality (String) Codec (ZSTD (1)), <C°decs + 28D
time DateTime Codec (DoubleDelta, ZSTD(1l)), compression
date ALIAS toDate(time),
temperature Decimal (5,2) Codec(T64, ZSTD(10)) (ALIAS column

)
Engine = MergeTree Time-based
PARTITION BY toYYYYMM (time) partitioning
ORDER BY (location, sensor id, time);

NDZENIZ NI NN

Sorting by key
columns + time

Y Altinity © 2022 Altinity, Inc. 15

On-disk table size for different schemas

Bytes per row for different levels of schema optimization

5.00
4.00
3.00
2.00

1.00

0.00
Unoptimized table = Optimized datatypes, ZSTD instead of LZ4

codecs, LZ4

n Altinity © 2022 Altinity, Inc.

16

ClickHouse single node query model

_Patts in Storage..
ClickHouse Server v

Query | > Parse/Plan
N </ =

Vectorized
Scan
In-RAM
Hash
Tables

\

|
Result < | Merge/Sort

£\ Altinity © 2022 Altinity, Inc.

Exploring linear local CPU scaling

-Query over 1.01 Billion rows Query Performance and CPU
set max_threads = 16;

SELECT
toYYYYMM(time) AS month,

countIf(msg_type = 'reading') AS
readings, 100
countIf(msg_type = 'restart') AS 8.0
restarts, 6.0
min(temperature) AS min, 40
round(avg(temperature)) AS avg, F
max(temperature) AS max
FROM test.readings_multi &
WHERE sensor_id BETWEEN @ and 10000 . .
GROUP BY month ORDER BY month ASC; 1.0]) A 8 6 2

Number of threads

20.0

Response Time (Log Seconds)
o

n Altinity © 2022 Altinity, Inc.

Ingesting data
into large tables

n Altinity © 2022 Altinity, Inc.

19

Pattern: multiple entities in a single table

Reading

e msg_type='reading’
e sensor id
e time

e temperature

Large table joins are an
anti-pattern in low-latency apps

£\ Altinity

© 2022 Altinity, Inc.

Restart
e msg_type='restart’
e sensor_id
e time
Error
e msg_type='err’
e sensor_id
e time
® message

20

Many apps keep entity sources for future flexibility

olo|=lalg s
A HELE
ao®PRG|2
ol | leigg| °
M alized B2 B o ["sensor id": "O0",
aterialize § % "time": "2019-01-01 00:00:00", Source
columns "msg_type" : "reading", data
"temperature": "46.31",
"message" : mwn ,
"device type": "O0",
"firmware": "frx23.0.22"
}
~ - y,
Y Y

1.34 bytes/row 4.14 bytes/row, ~96% compression with ZSTD(1)

Y Altinity © 2022 Altinity, Inc. .

Schema for a table based on multi-entity JSON

CREATE TABLE IF NOT EXISTS readings multi_ json (Codecs + LZ4
sensor_id Int32 Codec(DoubleDelta, LZ4), compression

sensor_ type UIntS8,
time DateTime Codec (DoubleDelta, LZ4), Discriminator
date ALIAS toDate(time), < column >
msg_type enum('reading'=l, 'restart'=2, 'err'=3),
temperature Decimal (5,2) Codec(T64, LZ4),

message String DEFAULT '', Strj_ng column
json String DEFAULT '' for JSON data

) Engine = MergeTree
PARTITION BY toYYYYMM(time)
<Sort by msg_type,>

ORDER BY (msg type, sensor id, time); ,
- - sensor, time

£\ Altinity © 2022 Altinity, Inc.

Loading raw data into large systems

Enrich data with
materialized view

INSERT

Sensor data

£\ Altinity

INTO
—

readings_etl
(Null Engine)

-

readings_multi
(Mergetree
Engine)

© 2022 Altinity, Inc.

ClickHouse makes it easy to materialize columns

ALTER TABLE readings multi_ json
ADD COLUMN IF NOT EXISTS firmware String
DEFAULT JSONExtractString(json, 'firmware')

ALTER TABLE readings multi_ json
UPDATE firmware = firmware WHERE 1=1

£\ Altinity © 2022 Altinity, Inc.

24

...But you can also index and query JSON directly

ALTER TABLE readings multi json
ADD INDEX jsonbf json TYPE tokenbf v1(8192, 3, 0)

GRANULARITY 1;

ALTER TABLE readings multi json Bloom filter tunJ;.ng
MATERIALIZE INDEX jsonbf; is complicated!

-—- Count matches on column. -— Count token matches in JSON.
SELECT count () SELECT count()
FROM readings multi json FROM readings multi_ json
WHERE WHERE
firmware = 'frx23ID0000x2532" hasToken (json, 'frx23ID0000x2532")

© 2022 Altinity, Inc. 25

£\ Altinity

Results are good if you have high cardinality values

£\ Altinity

Response (seconds)

Materialized column vs indexed JSON values

B Column performance ™ Indexed JSON performance

0.060
0.040

0.020

0.000

4096 8192 16384
Bloom Filter Index size (bytes)

© 2022 Altinity, Inc. 26

Unique
ClickHouse tricks
for large datasets

n Altinity © 2022 Altinity, Inc.

27

How can we make queries fast on large data sets?

Create queries that work
in a single scan without
large-table joins

£\ Altinity © 2022 Altinity, Inc.

28

Hint: Aggregation runs in a single pass

No need to 1123 113 5 0o/ 5 0|0
move data __ _ |
: . Sum=6 | . Sum=9 | . Sum=5 |
‘ Parallelizes! l . Count=3 | . Count=3 | i Count=4 ,
Intermediate 5+94+5 J
results are = 9
reusable 3+3+4

0\ Altinity © 2022 Altinity, Inc. 29

What about queries over all entities?

SELECT toYYYYMM(time) AS month,
'reading') AS readings,
countIf (msg type = 'restart') AS restarts,
min (temperature) AS min,

countIf (msg_ type

FROM test.readings multi WHERE sensor id = 3
GROUP BY month ORDER BY month ASC

—month——readings——restarts

| 201901
| 201902
| 201903
l

44640
40320
15840

min

I
1 | 0
0 | 68.09
0| 73.19
|

avg—T———max—
75	118.33
81	93.98
84	95.3
	I

£ Altinity

© 2022 Altinity, Inc.

Use conditional
aggregation!

round (avg (temperature)) AS avg, max(temperature) AS max

30

What about joins on distributed data?

Use case: join restarts with temperature readings

Restart times

msg_type
‘restart’

sensor_id

time

JOIN key

msg_type
‘reading’

sensor_id

time

temperature

| g J1

| = J1

3

Temperature readings

£\ Altinity

Temperatures after restart

sensor_id

time

temperature

uptime

© 2022 Altinity, Inc.

31

Aggregation can implement joins!

Restart and temperature records Temperatures after restart
msg_type | sensor_id | time sensor_id | time | temperature uptime
' 236 11 7644 [30
msg_type | sensor_id | time | temperature ' 236 ‘Itz] 90.39 I 90 :
| I I | 1 236 "t3 I82.08 150
| | — 236 I lag12 | 210 ;

Grouped array values
£\ Altinity 32

And here’s the code...

SELECT sensor id, reading time, temp, reading time,
reading time - restart time AS uptime

FROM (
WITH toDateTime('2019-04-17 11:00:00') as start of range
SELECT sensor id, groupArraylf(time, msg type = 'reading') AS
reading time,
groupArraylf (temperature, msg type = 'reading') AS temp,
anyIf(time, msg type = 'restart') AS restart time

FROM test.readings multi rm
WHERE (sensor_id = 2555)

AND time BETWEEN start of range AND start of range + 600
GROUP BY sensor_ id)

ARRAY JOIN reading time, temp Not everyone’s cup of tea,
but it works!!!

1 Altinity © 2022 Altinity, Inc.

How about locating key events in tables?

SELECT message
FROM readings multi

When was the WHERE (msg_type, sensor_ id, time) IN
(SELECT msg_type, sensor_id, max(time)

last restart on FROM readings multi

sensor 2369 WHERE msg_ type = 'restart'

AND sensor_id = 236
GROUP BY msg_type, sensor_ id)

Expensive on large
datasets!

£\ Altinity © 2022 Altinity, Inc.

Finding the last restart is an aggregation task!

sensor_id time msg_type
sensor_id time msg_type 236 2019-01-10 21:07:56 restart
236 2019-01-10 20:00:13 restart
Merge
sensor_id time msg_type
GROUP BY key
236 2019-01-10 21:07:56 restart

£\ Altinity

row value

© 2022 Altinity, Inc.

35

Use materialized views to “index” data

MergeTree Table “Last point query”

Block lands in | SELECT I

source table : sensor id, |
max (time) AS time '

| FROM readings multi

| p—
IWHERE msg_type = 'restart' , Block(s) land
I GROUP BY sensor_id I in materialized
b oo o o o o e e e e e e e e e e o . .
view target
table
AggregatingMergeTree

Finding the last restart on a sensor
inding Table

£\ Altinity © 2022 Altinity, Inc.

And here’s code for the materialized view...

CREATE TABLE sensor last restart agg (SimpleAggregateFunction
sensor_id Int32, simplifies insert and query
time SimpleAggregateFunction(max, DateTime),
msg_type AggregateFunction(argMax, String, DateTime)

)
ENGINE = AggregatingMergeTree ()

PARTITION BY tuple() ORDER BY sensor id tuple() is a dubious choice!
CREATE MATERIALIZED VIEW sensor last restart
TO sensor_ last restart agg AS SELECT
sensor_id, max(time) AS time,
argMaxState (msg_type, time) AS msg_ type
FROM readings multi
WHERE msg_type = 'restart' GROUP BY sensor_ id

£\ Altinity © 2022 Altinity, Inc.

Comparison of source table to typical materialized view

£\ Altinity

Size (GB, Log Scale)

1000.00

100.00

10.00

1.00

Table metrics

B Storage Size ® Parts

readings_multi_daily (mv) readings_multi (source)

© 2022 Altinity, Inc.

150.0

100.0

50.0

0.0

Number of Parts

38

£\ Altinity

Wrap-up

© 2022 Altinity, Inc.

39

Learnings from large ClickHouse installations

Use a single large table to hold all entities
Make sound implementation choices to get baseline performance
Include source data for future flexibility without moving data

Aggregation is a secret ClickHouse power: use it to scan, join, index data

Your reward: Linear scaling, high cost-efficiency, and happy users

n Altinity © 2022 Altinity, Inc.

Other important techniques for big data

Sharding and replication
Tiered storage
Object storage

Approximate queries using sampling and approximate unigs (lighter aggregation)

n Altinity © 2022 Altinity, Inc.

41

Where is the documentation?

ClickHouse official docs — https://clickhouse.com/docs/

Altinity Blog — https://altinity.com/blog/

Altinity Youtube Channel -
https://www.youtube.com/channel/UCE3Y2IDKI ZfjaCrhé620onYA

Altinity Knowledge Base — https://kb.altinity.com/

Meetups, other blogs, and external resources. Use your powers of Search!

n Altinity © 2022 Altinity, Inc.

42

https://clickhouse.com/docs/
https://altinity.com/blog/
https://www.youtube.com/channel/UCE3Y2lDKl_ZfjaCrh62onYA
https://kb.altinity.com/

Thank y -
Questions?

https://altinity.com | -
/ We're hiring!h™

% Altinity 43

https://altinity.com

