
How we turned this 
quaint place into our 
event mansion

Jams Greenhill
@fuziontech

Eric Duong



What is PostHog?

Open source product analytics suite

•

•

Consuming events since January 2020

Completely distributed



Defining characteristics
A data warehouse in a box

•

•

•

•

As close to real time as possible

Continually growing feature set

Accept and filter on arbitrary 

user-defined prope�ties in event 

payloads

You can host and own your data 

yourself!



Version 0.5: Postgres
MVP

•

•

•

•

All queries written in django ORM

PostHog features require relations, perfect for Postgres

Postgres is well suppo�ted by the community and easy to deploy

We pushed Heroku Postgres to its absolute limit. Had to move to something 

more capable!



How we evaluated ClickHouse

•

•

•

•

•

•

OLAP databases we thought about using:

Pinot

Presto

Druid

TimescaleDB

CitusDB

ClickHouse

https://pinot.apache.org/
https://prestodb.io/
https://druid.apache.org/
https://www.timescale.com/
https://www.citusdata.com/
https://clickhouse.com/


How we evaluated ClickHouse

•

•

•

Basically came down to three factors:

Speed

Complexity of management

Query interface



Why ClickHouse
How we made the decision

•

•

•

•

•

•

•

Reviewed a ton of benchmarks 

Looked at who is using what and asked how they liked it

Sentry - ClickHouse for pretty much everything

Cloudflare - 6m requests per second

Uber - Logs

Yandex

Setup a test cluster and was blown away by the speed 

and ease of setup

https://altinity.com/benchmarks/
https://blog.sentry.io/2019/05/16/introducing-snuba-sentrys-new-search-infrastructure
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/


What is a ClickHouse?
How we made the decision

•

•

•

•

•

ClickHouse powers Yandex Metrica (Russian Google Analytics)

20 billion events a day. Over 13 trillion records in total. Repo�ts are built 

on the fly from non-aggregated data.

Column-oriented database management system (DBMS) for online 

analytical processing (OLAP) of queries.

Written in C++

Tightly coupled compute and storage



What makes ClickHouse special
•

•

•

•

•

•

•

•

•

Excellent compression

Process data from disk (cheap)

Vector computation

Near real-time data updates (based on so�t keys)

So�ted data allows primary and secondary indexes

Data skipping indexes

No query planner

Suppo�t for approximated calculations

Easy replication & sharding (more on that later)

https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/mergetree/#table_engine-mergetree-data_skipping-indexes


What makes ClickHouse painful
•

•

•

•

Mutations are not really suppo�ted and very expensive on disk throughput

Transactions are not suppo�ted

Sparse index is not a real index. Does not help with grabbing a single row by 

key

Resharding is painfully manual using ClickHouse-Copier



What is an EventMansion
•

•

•

•

Users should get as close to real time results as possible

ClickHouse performance along with some clever architecting allows us 

to continue providing users with near real time results

There's a continually growing featureset

ClickHouse SQL has been developed to resemble popular syntaxes 

such as those from Postgres and MySQL (joins, window functions, etc.)



What is an EventMansion
•

•

•

•

The system should be able to accept and filter on user-defined prope�ties in 

event payloads

Features such as materialized columns allowed us to tailor architecture 

to perform well for our use cases 

The system should be as easily deployable as possible to cater to users who 

want to own their data

Integrated solutions such as kafka engines helped us get off the 

ground quickly



Initial learnings
•

•

•

•

•

•

•

•

We tried to extract JSON key, values

Arrays can be slow [k1, k2, k3, ...], [v1, v2, v3, ...]

KV lookup table even slower

Leverage columnar advantages as much as you can!

JSONExtractString is surprisingly fast, but still expensive for CPU on large JSON objects

Developed our own way to serialize DOM hierarchies to make querying the DOM very 

efficient 

Thanks google/re2!

Don’t mutate if you can help it!



Making the switch
•

•

•

We made the switch by deploying ClickHouse and ingesting events to both 

our ClickHouse and Postgres database, effectively duplicating our 

ingestion

Reimplemented our analytic queries one by one using feature flags

Once everything was migrated, we simply stopped storing into Postgres



How we deploy ClickHouse 
🚢 
•

•

•

•

On custom i3en.12xlarge instances with local NVMe storage

We use CloudFormation + Ansible to configure these.

Using ClickHouse-Operator (made by Altinity!)

Customer deployed PostHog is all managed through our Helm Cha�t. We 

did this because of the amazing ClickHouse-Operator offered by Altinity 

that makes our job much easier.



ClickHouse on 
app.posthog.com
•

•

•

•

•

•

4 x i3en.12xlarge

48 vCPU

384 GB Memory

4 x 7,500 gb NVMe SSD

Raid 1+0

50 Gbps Network 

Bandwidth

•

•

•

•

•

2 x t3a.2xlarge

8 vCPU

32 GB Memory

8 TB EBS GP3

Up to 5 Gbps Network 

Bandwidth

•

•

•

•

•

Total

208 vCPU

1,600 GB Memory

30 TB NVMe SSD

16 TB GP3 EBS



Helm architecture



ClickHouse table engines

•

•

•

•

•

•

•

ClickHouse allows you to set an engine when creating data tables depending 

on the data’s characteristics

ReplacingMergeTree - Dedupes for us!

CollapsingMergeTree - Mutations, but without actual mutations

VersionedCollapsingMergeTree  ^ But better

Kafka - Read from Kafka topic as if it were local storage

Distributed - Scale out

MaterializedView - View, but persisted to disk

S3 - Cold Storage

https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/replacingmergetree/#replacingmergetree
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/collapsingmergetree/#table_engine-collapsingmergetree
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/versionedcollapsingmergetree/#versionedcollapsingmergetree
https://clickhouse.com/docs/en/engines/table-engines/integrations/kafka/
https://clickhouse.com/docs/en/engines/table-engines/special/distributed/#distributed
https://clickhouse.com/docs/en/engines/table-engines/special/materializedview/#materializedview
https://clickhouse.com/docs/en/engines/table-engines/integrations/s3/


To ORM or not to ORM

•

•

•

•

•

Previously relied on django ORM to query data

Given the complexity of our queries going forward, we chose not to use 

any of the existing clickhouse ORMs

More control

Easier to debug

Less interfaces to manage

(Object-relational mapping)



Query characteristics
•

•

•

•

•

•

ClickHouse syntax is familiar (datepa�t() vs toSta�tOfMonth())

Not all expected features exist yet (CTEs were limited, window functions 

just )

But the ones that do are powerful 

Window functions came in handy for rewriting funnel queries 🌶

ClickHouse has doubled down in providing extra functionality for array 

processing (Example: arraySplit to discover session boundaries instead 

of neighbor functions)

Joins help us continue manipulating relational data



Testing

•

•

•

Integration tests is our main focus due to variability in queries 

Recently added snapshot tests to ensure specific query shapes

Airspeed Velocity (ASV) is used to run benchmark tests on a fresh 

deployment of posthog loaded with a sample set of data

Keeping the ship sailing

https://github.com/airspeed-velocity/asv/


Latest learnings
Queries against event prope�ties was slow



Solution:

•

•

3.4x improvement in query time

81% reduction in bytes read from disk

Materialized columns!



The future

•

•

•

•

Build functions at the source 

Materialize/precalculate more data (actions)

MaterializedPostgreSQL engine experiments

Leverage Altinity-hosted ClickHouse

https://clickhouse.com/docs/en/engines/database-engines/materialized-postgresql/


Questions?!


