How c
Build a ngh C

Series Databas-

g‘i& 2021



About me

I'm Aliaksandr Valialkin, CTO and core developer at VictoriaMetrics
| like programming in Go

I'm fond of performance optimizations

| like ClickHouse :)

Follow me @GitHub - https://github.com/valyala

@zon



What is VictoriaMetrics?

e FEasy to use time series database and monitoring solution

e Can be used as drop-in replacement for Prometheus and Graphite

e Provides monitoring-optimized query language - MetricsQL (inspired by
PromQL)

e Optimized for low resource usage (disk space, disk 10, CPU, RAM)

e Optimized for high performance

ICTORIA
ETRICS

«

\'/
M

@zon



he history of VictoriaMetrics

@2021



The history of VictoriaMetrics: ad analytics and PostgreSQL

e Long time ago we were using PostgreSQL for ad analytics

Ad click events

Ad view events

N
e

@zon

PostgreSQL

Analytical reports




The history of VictoriaMetrics: ad analytics and PostgreSQL

e Long time ago we were using PostgreSQL for ad analytics

e PostgreSQL was great until the stream of the stored events start exceeding

100K rows/sec

Y
S

| 100K events/sec Postgresal Analytical reports

Ad click events \

Ad view events

@zon



The history of VictoriaMetrics: ad analytics and PostgreSQL

e We squeezed the maximum possible data ingestion speed from PostgreSQL:
https://gist.github.com/valyala/ae3cbfad104f1a022a2af?b8656b 1131

Optimizing postgresql table for more than 100K inserts per
second

« Create UNLOGGED table. This reduces the amount of data written to persistent storage by up to 2x.

e Set WITH (autovacuum_enabled=false) on the table. This saves CPU time and IO bandwidth on useless vacuuming of
the table (since we never DELETE Or UPDATE the table).

» Insert rows with copy FrRoM STDIN . This is the fastest possible approach to insert rows into table.

» Minimize the number of indexes in the table, since they slow down inserts. Usually an index on time timestamp with
time zone iS enough.

e Add synchronous_commit = off 10 postgresql.conf .
« Use table inheritance for fast removal of old data:

@zon



The history of VictoriaMetrics: ad analytics and PostgreSQL

There were issues with query performance as well
These issues were solved by creating many tables with aggregate analytics

®
o
e The number of different aggregate tables was constantly growing...
o

...as well as the time needed for aggregate calculations

@zon



The history of VictoriaMetrics: ad analytics and PostgreSQL

We started searching for a new database for ad analytics
CitusDB looked promising. But it was hard to setup and operate
Postgres-XL was even harder to setup and operate

We tried MemSAQL. It failed because of high RAM usage :(

@zon



The history of VictoriaMetrics: ad analytics and PostgreSQL

We started searching for a new database for ad analytics
CitusDB looked promising. But it was hard to setup and operate
Postgres-XL was even harder to setup and operate

We tried MemSAQL. It failed because of high RAM usage :(
Then we discovered ClickHouse!

@zon



ClickHouse for ad analytics

@2021



The history of VictoriaMetrics: ad analytics and ClickHouse

ClickHouse fit perfectly for our use casel!

We successfully migrated ad analytics from PostgreSQL to ClickHouse in one month
ClickHouse was accepting up to 300K events per second on a single server with 50
columns per event

It easily scaled to a cluster of a dozen of nodes, which was accepting 3M events/sec
without issues

ClickHouse could scan up to 1000x more rows per second than PostgreSQL on the
same hardware!

We dropped the majority of the pre-computed aggregate tables, since ClickHouse
could calculate arbitrary reports for our ad analytics over raw events in a blink of an
eyel

@zon



The history of VictoriaMetrics: ad analytics and ClickHouse

e We were happy users of ClickHouse, so we decided to give back to community

@zon



The history of VictoriaMetrics: ad analytics and ClickHouse

e We were happy users of ClickHouse, so we decided to give back to community
We created a datasource for Grafana, which allowed building graphs and reports in
Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

ClickHouse datasource for Grafana 4.6+

ClickHouse datasource plugin provides a support for ClickHouse as a backend database.

Features:

» Access to CH via HTTP / HTTPS
« Query setup

» Raw SQL editor

« Query formatting

» Macros support

« Additional functions

« Templates

» Table view

« SingleStat view

« Ad-hoc filters

« Annotations
@2021 » Alerts support



The history of VictoriaMetrics: ad analytics and ClickHouse

e We were happy users of ClickHouse, so we decided to give back to community
We created a datasource for Grafana, which allowed building graphs and reports in
Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

e Then we created a proxy, which could be used for authorizing and load-balancing of
insert and select requests among ClickHouse clusters, replicas and nodes -
https://github.com/Vertamedia/chproxy

@zon



The history of VictoriaMetrics: ad analytics and ClickHouse

e We were happy users of ClickHouse, so we decided to give back to community
We created a datasource for Grafana, which allowed building graphs and reports in
Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

e Then we created a proxy, which could be used for authorizing and load-balancing of
insert and select requests among ClickHouse clusters, replicas and nodes -
https://github.com/Vertamedia/chproxy

e Then | created a fast reader of TSV data from ClickHouse -
https://github.com/valyala/tsvreader

@zon



The history of VictoriaMetrics: ad analytics and ClickHouse

e We were happy users of ClickHouse, so we decided to give back to community
We created a datasource for Grafana, which allowed building graphs and reports in
Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

e Then we created a proxy, which could be used for authorizing and load-balancing of
insert and select requests among ClickHouse clusters, replicas and nodes -
https://github.com/Vertamedia/chproxy

e Then | created a fast reader of TSV data from ClickHouse -
https://github.com/valyala/tsvreader

e |filed a few feature requests and bug reports at ClickHouse repository -
https://github.com/ClickHouse/ClickHouse/issues?q=is%3Aissue+author%3Avalyala

@zon




2021

® 10pen v 13Closed Author ~ Label ~ Projects ~ Milestones ~

@© feature: automatically convert string column block with low cardinality into int column block with id -> value
mapping before compression performance
#1567 by valyala was closed on Jan 24, 2019

@© feature: don't waste page cache resources when merging big parts (Enhancement)
#1566 by valyala was closed on Oct 31, 2018

© Reduce memory usage during vertical merge
#931 by valyala was closed on Aug 21, 2017

© Feature request: add ability to apply delta or delta-of-delta encoding to numeric columns before compression

#838 by valyala was closed on Jan 27, 2019

© Distributed table engine cannot merge distinctly ordered columns
#829 by valyala was closed on Oct 17, 2018

® cannot fetch dictionary by https from a server with valid ECDSA certificate comp-dictionary
#820 by valyala was closed on Oct 25, 2017

© Use MergeTree key when locating rows on key column IN (subquery) conditions {Enhancement)
#687 by valyala was closed on Oct 17, 2018

performance

© Feature request: evaluate and prune constant expressions before columns' scanning ¢
#658 opened on Apr 6, 2017 by valyala

© Feature request: add ability to drop MergeTree table parts by primary key range (o
#654 by valyala was closed on Jul 16, 2018

© slow batch inserts into Buffer table (enhancement)
#594 by valyala was closed on Mar 23, 2017

® FR: arbitrary min-max indices
#530 by valyala was closed on Jul 18, 2019

®© Error when filtering on updated enum column type @)
#512 by valyala was closed on Mar 9, 2017

© ALTER TABLE ... FREEZE PARTITION sometimes returns 'File not found' error
#393 by valyala was closed on Oct 12, 2017

© Unable to add new values to Enum column if it belongs to primary key (Efhancement)
#364 by valyala was closed on Feb 17, 2017

Assignee ~

Sort ~

P

D2

D2

o1



The history of VictoriaMetrics: Prometheus and ClickHouse

We were using Zabbix for infrastructure and application monitoring

The experience wasn't very good, so we were searching for a replacement

We discovered Prometheus in the beginning of 2017

It was great!

Unfortunately it started to slow down with the increased number of monitored apps
So we decided to try ClickHouse as a remote storage for Prometheus

@zon



ClickHouse as data storage for Prometheus

@2021



The history of VictoriaMetrics: ClickHouse as metrics storage

e Prometheus collects samples with the following structure:

http_requests_total{path="/foo", job="webserver”,instance="host-1:80"} 12 34567

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e Prometheus collects samples with the following structure:

[http requests_ total]{E)ath— /foo”, job="webserver”, instance="host-1:806" } 12 34567

@zon

/

metric_name

_— el

labels

value

timestamp




The history of VictoriaMetrics: ClickHouse as metrics storage

® Let's store Prometheus samples in the following ClickHouse table:

samples (
metric_name String,
labels String,
timestamp Int64,
value Float64
) ORDER BY (metric_name, labels, timestamp)

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

® Let's store Prometheus samples in the following ClickHouse table:

samples (
metric_name String,
labels String,
timestamp Int64,
value Float64
) ORDER BY (metric_name, labels, timestamp)

e This allows quickly locating samples for a particular metric

e This allows searching for samples with particular labels via regexp matching. But this
isn't an easy and fast task

e “metric_name” and ‘labels’ are duplicated with every sample

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e Let's move ‘'metric_name” and ‘labels’ columns into a separate table:

metric_to_series (metric_name String, labels String, series_id Uint64)
ORDER BY (metric_name, labels)

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e Let's move ‘'metric_name” and ‘labels’ columns into a separate table:

metric_to_series (metric_name String, labels String, series_id Uint64)
ORDER BY (metric_name, labels)

e Then the 'samples’ table will look like:

samples (series_id Uint64, timestamp Int64, value Float64) ORDER BY
(series_id, timestamp)

e This reduces the overhead for storing ‘'metric_name’ and ‘labels’ per each sample

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e Let's move ‘'metric_name” and ‘labels’ columns into a separate table:

metric_to_series (metric_name String, labels String, series_id Uint64)
ORDER BY (metric_name, labels)

e Then the 'samples’ table will look like:

samples (series_id Uint64, timestamp Int64, value Float64) ORDER BY
(series_id, timestamp)

This reduces the overhead for storing ‘metric_name’ and ‘labels’ per each sample
e Butitis still hard to search by labels

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e Let's introduce an additional table:

label_to_series (label_name_value String, series_id Uint64) ORDER BY
(label_name_value, series_id)

e The label_name_value® column contains “label=value™ strings
This table simplifies and speeds up searching by labels
e Such table is known as “inverted index”

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The 'samples’ table can be optimized further with special codecs for timestamp and
value:
samples (timestamp Int64 Codec(DoubleDelta), value Float64 Codec(Gorilla))
([ J

These codecs reduce disk space usage for typical time series data

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The 'samples’ table can be optimized further with special codecs for timestamp and
value:

samples (timestamp Int64 Codec(DoubleDelta), value Float64 Codec(Gorilla))

e These codecs reduce disk space usage for typical time series data

e Unfortunately these codecs weren't available in ClickHouse in 2017 (

e These codecs were added after the feature request -
https://github.com/ClickHouse/ClickHouse/issues/838

Feature request: add ability to apply delta or delta-of-delta encoding to
numeric columns before compression #838

QYL valyala opened this issue on Jun 1, 2017 - 18 comments

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The ‘series and ‘label_to_series tables also can be optimized further by using
LowCardinality codecs:

series (metric_name LowCardinality(String), labels String, series_id Uint64)

label_to_series (label_name_value LowCardinality(String), series_id Uint64)

e This saves disk space and improves query performance

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The ‘series and ‘label_to_series tables also can be optimized further by using

LowCardinality codecs:

series (metric_name LowCardinality(String), labels String, series_id Uint64)

label_to_series (label_name_value LowCardinality(String), series_id Uint64)

e This saves disk space and improves query performance

But LowCardinality codec wasn't available in ClickHouse in 2017 «(
It was added as a response to the feature request -
https://github.com/ClickHouse/ClickHouse/issues/1567

feature: automatically convert string column block with low cardinality into int

column block with id -> value mapping before compression #1567
valyala opened this issue on Nov 29, 2017 - 14 comments

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e Further optimizations:
o The 'metric_name’ column can be encoded as a label with a special name -
" _name__ (Prometheus does this)
o There should be a table for fast lookup of metric_namef{labels} from “series_id'
during queries

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

This table is used by the app, which accepts new samples and needs to determine the
corresponding series_id per each incoming sample

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

series_to_metric (series_id Uint64, metric_name_with_labels String) ORDER
BY (series_id)

This table is needed for converting the found series_id to human-readable format
metric_name{labels} during queries

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

series_to_metric (series_id Uint64, metric_name_with_labels String) ORDER
BY (series_id)

label_to_series (label_name_value LowCardinality(String), series_id
Uint64) ORDER BY (label_name_value, series_id)

This table is used for fast lookups of series_id for the given label filters during queries. For
example, http_requests_total{job="webserver”} should find series_id values for series with
both {__name__="http_requests_total”} and {job="webserver”} labels

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

series_to_metric (series_id Uint64, metric_name_with_labels String) ORDER
BY (series_id)

label_to_series (label_name_value LowCardinality(String), series_id
Uint64) ORDER BY (label_name_value, series_id)

samples (series_id Uint64, timestamp Int64 Codec(DoubleDelta), value
Float64 Codec(Gorilla)) ORDER BY (series_id, timestamp)

This table stores (timestamp, value) pairs for the ingested samples

@zon



The history of VictoriaMetrics: ClickHouse as metrics storage

e This approach looks good
e But it has the following issues:

@zon

(@)

It needs an external app for collecting the incoming samples and quickly adding missing
entries to ‘metric_to_series’, “series_to_metric’ and ‘label_to_series’ tables. The app should be
able to buffer incoming data in order to reduce the frequency of inserts to ClickHouse

It needs an external app for providing Prometheus-compatible querying AP

This increases operational complexity

The on-disk compression level can be improved further



Meet VictoriaMetrics!

@2021



Meet VictoriaMetrics!

e So we decided to create a specialized time series database from scratch in
order to solve the mentioned issues

e |t should meet the following requirements:
It must be fast
It must be easy to setup and operate

O
O
o It must scale both vertically (more CPU and RAM) and horizontally (multiple nodes)
O

It must be easy to code

@zon



Meet VictoriaMetrics!

e So we decided to create a specialized time series database from scratch in
order to solve the mentioned issues

e |t should meet the following requirements:
o It must be fast
o It must be easy to setup and operate
o It must scale both vertically (more CPU and RAM) and horizontally (multiple nodes)
o It must be easy to code

e |don'tlike C++ because of its complexity, but | like writing fast code in Go
e So VictoriaMetrics is written in Go :)

@zon



Meet VictoriaMetrics!

e Conceptually VictoriaMetrics uses the same database scheme discussed

previously:
o metric_to_series (metric_name_with_labels string, series_id uint64)
o series_to_metric (series_id uinté4, metric_name_with_labels string)
o label_to_series (label_name_value string, series_id uint64)
o samples (series_id uint64, timestamp int64, value float64)

e Butit doesn't use external libraries or apps for the database
e Itimplements specially optimized persistent data structures for the given
tables

@zon



VictoriaMetrics: persistent data structures

e The first three tables - ‘'metric_to_series’, “series_to_metric’ and
‘label_to_series’ - are stored in a mergeset (aka indexdb). It stores sorted
strings. It is optimized for fast data insertion, fast lookups and fast range

scans by string prefix
e The last table - 'samples’ - is stored in a separate data structure similar to
MergeTree in ClickHouse

@zon



VictoriaMetrics: data ingestion path

e VictoriaMetrics accepts samples in various formats: InfluxDB, Graphite,
OpenTSDB, Prometheus, DataDog, CSV, JSON, etc.

e The ingested samples are buffered in memory

e The indexdb is dynamically updated when samples with new
metric_name{labels} are ingested into the database

e The buffered samples are converted to ClickHouse-like parts and flushed to
disk every second

@zon



VictoriaMetrics: 'samples’ table internals

e Atable is split into per-month partitions. This allows instant removal of the data outside the
retention period

e Each partition consists of ClickHouse-like parts, which are merged in background into
bigger parts

e Each partis split into blocks

e Each block contains samples only for a single time series. Samples are sorted by timestamp
in each block

e Block size is limited to 8K samples, so it can fit CPU cache for the max processing speed

e Blocks are processed independently of each other, so they can be processed in parallel

e ‘timestamp’ and ‘value’ columns are encoded separately with the most efficient codecs in
order to get the maximum compression rate -
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-go
rilla-317bc1{95932

@zon




VictoriaMetrics: query path

e Query is split into two steps:

o  Selecting time series matching the given label filters on the given time range
o Processing samples for the selected time series according to the query

@zon



VictoriaMetrics: query path

e Query is split into two steps:
o  Selecting time series matching the given label filters on the given time range
o Processing samples for the selected time series according to the query

e Matching time series are searched via ‘label_to_series’ table. The table may
contain billions of entries, so VictoriaMetrics uses various optimization tricks
(composite index, per-day index, optimized bitset, unpacked data cache,
search cache) in order to speed up the search

@zon



VictoriaMetrics: query path

e Query is split into two steps:
o  Selecting time series matching the given label filters on the given time range
o Processing samples for the selected time series according to the query

e Matching time series are searched via ‘label_to_series’ table. The table may
contain billions of entries, so VictoriaMetrics uses various optimization tricks
(composite index, per-day index, optimized bitset, unpacked data cache,
search cache) in order to speed up the search

e Then VictoriaMetrics unpacks and processes blocks of samples for the found
time series on the given time range. Blocks are unpacked and processed in
parallel on all the available CPU cores in order to improve query performance

@zon



VictoriaMetrics: query path

e VictoriaMetrics implements MetricsQL - query language inspired by PromQL
- https://docs.victoriametrics.com/MetricsQL.htm|

e Typical queries used in monitoring are easier to write in MetricsQL than in
SQL -
https://valyala.medium.com/promqgl-tutorial-for-beginners-2ab455142085

e VictoriaMetrics implements the following query APIs:

o Prometheus API - https://docs.victoriametrics.com/#prometheus-querying-api-usage
o Graphite API - https://docs.victoriametrics.com/#graphite-api-usage

e VictoriaMetrics can be used as drop-in replacement for Prometheus and
Graphite

@zon




VictoriaMetrics: horizontal scalability

2021

Clients

vmselect fully supports PromQL and can
be used as Prometheus datasource in
Grafana

Stateless

vmselect fetches and merges data from
vmstorage during queries

Stateful

vmstorage stores time series data

Stateless

vminsert spreads time series across
available vmstorage nodes

Writers

Multiple Prometheus instances may write
data to VictoriaMetrics cluster

There is support for other ingestion
protocols

Grafana

Prometheus
API clients

VictoriaMetrics cluster

Load balancer

vmselect 1

EESEnieey

vmselect M

7

vmstorage N

vminsert 1 vminsert P
1 ]
_______________________________________________ r..____,_._._.,.____,,._._.,,.____..___._,.__._..._ _——
Load balancer
Prometheus Influx Graphite OpenTSDB
remote_write API Line Protocol Plaintext Protocol Put Protocol




VictoriaMetrics: the end result

e Fast time series database and monitoring solution inspired by ClickHouse

e FEasy to setup and operate

e Integrates with Prometheus, Grafana, InfluxDB, Graphite, DataDog and
OpenTSDB

e Scales vertically and horizontally

e Successfully handles tens of trillions (e.g. more than 107 13) of samples per
node in production - https://docs.victoriametrics.com/CaseStudies.html

@zon






