
How ClickHouse Inspired Us to
Build a High Performance Time

Series Database

About me

● I’m Aliaksandr Valialkin, CTO and core developer at VictoriaMetrics
● I like programming in Go
● I’m fond of performance optimizations
● I like ClickHouse :)
● Follow me @GitHub - https://github.com/valyala

What is VictoriaMetrics?

● Easy to use time series database and monitoring solution
● Can be used as drop-in replacement for Prometheus and Graphite
● Provides monitoring-optimized query language - MetricsQL (inspired by

PromQL)
● Optimized for low resource usage (disk space, disk IO, CPU, RAM)
● Optimized for high performance

The history of VictoriaMetrics

The history of VictoriaMetrics: ad analytics and PostgreSQL

● Long time ago we were using PostgreSQL for ad analytics

PostgreSQL

Ad click events

Ad view events

Analytical reports

The history of VictoriaMetrics: ad analytics and PostgreSQL

● Long time ago we were using PostgreSQL for ad analytics
● PostgreSQL was great until the stream of the stored events start exceeding

100K rows/sec

PostgreSQL

Ad click events

Ad view events

Analytical reports

I’m
slow :(

100K events/sec

The history of VictoriaMetrics: ad analytics and PostgreSQL

● We squeezed the maximum possible data ingestion speed from PostgreSQL:
https://gist.github.com/valyala/ae3cbfa4104f1a022a2af9b8656b1131

The history of VictoriaMetrics: ad analytics and PostgreSQL

● There were issues with query performance as well
● These issues were solved by creating many tables with aggregate analytics
● The number of different aggregate tables was constantly growing...
● ...as well as the time needed for aggregate calculations

The history of VictoriaMetrics: ad analytics and PostgreSQL

● We started searching for a new database for ad analytics
● CitusDB looked promising. But it was hard to setup and operate
● Postgres-XL was even harder to setup and operate
● We tried MemSQL. It failed because of high RAM usage :(

The history of VictoriaMetrics: ad analytics and PostgreSQL

● We started searching for a new database for ad analytics
● CitusDB looked promising. But it was hard to setup and operate
● Postgres-XL was even harder to setup and operate
● We tried MemSQL. It failed because of high RAM usage :(
● Then we discovered ClickHouse!

ClickHouse for ad analytics

The history of VictoriaMetrics: ad analytics and ClickHouse

● ClickHouse fit perfectly for our use case!
● We successfully migrated ad analytics from PostgreSQL to ClickHouse in one month
● ClickHouse was accepting up to 300K events per second on a single server with 50

columns per event
● It easily scaled to a cluster of a dozen of nodes, which was accepting 3M events/sec

without issues
● ClickHouse could scan up to 1000x more rows per second than PostgreSQL on the

same hardware!
● We dropped the majority of the pre-computed aggregate tables, since ClickHouse

could calculate arbitrary reports for our ad analytics over raw events in a blink of an
eye!

The history of VictoriaMetrics: ad analytics and ClickHouse

● We were happy users of ClickHouse, so we decided to give back to community

The history of VictoriaMetrics: ad analytics and ClickHouse

● We were happy users of ClickHouse, so we decided to give back to community
● We created a datasource for Grafana, which allowed building graphs and reports in

Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

The history of VictoriaMetrics: ad analytics and ClickHouse

● We were happy users of ClickHouse, so we decided to give back to community
● We created a datasource for Grafana, which allowed building graphs and reports in

Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

● Then we created a proxy, which could be used for authorizing and load-balancing of
insert and select requests among ClickHouse clusters, replicas and nodes -
https://github.com/Vertamedia/chproxy

The history of VictoriaMetrics: ad analytics and ClickHouse

● We were happy users of ClickHouse, so we decided to give back to community
● We created a datasource for Grafana, which allowed building graphs and reports in

Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

● Then we created a proxy, which could be used for authorizing and load-balancing of
insert and select requests among ClickHouse clusters, replicas and nodes -
https://github.com/Vertamedia/chproxy

● Then I created a fast reader of TSV data from ClickHouse -
https://github.com/valyala/tsvreader

The history of VictoriaMetrics: ad analytics and ClickHouse

● We were happy users of ClickHouse, so we decided to give back to community
● We created a datasource for Grafana, which allowed building graphs and reports in

Grafana from ClickHouse data. Now it is supported by Altinity -
https://github.com/Vertamedia/clickhouse-grafana

● Then we created a proxy, which could be used for authorizing and load-balancing of
insert and select requests among ClickHouse clusters, replicas and nodes -
https://github.com/Vertamedia/chproxy

● Then I created a fast reader of TSV data from ClickHouse -
https://github.com/valyala/tsvreader

● I filed a few feature requests and bug reports at ClickHouse repository -
https://github.com/ClickHouse/ClickHouse/issues?q=is%3Aissue+author%3Avalyala

The history of VictoriaMetrics: Prometheus and ClickHouse

● We were using Zabbix for infrastructure and application monitoring
● The experience wasn’t very good, so we were searching for a replacement
● We discovered Prometheus in the beginning of 2017
● It was great!
● Unfortunately it started to slow down with the increased number of monitored apps
● So we decided to try ClickHouse as a remote storage for Prometheus

ClickHouse as data storage for Prometheus

● Prometheus collects samples with the following structure:

http_requests_total{path=”/foo”,job=”webserver”,instance=”host-1:80”} 12 34567

The history of VictoriaMetrics: ClickHouse as metrics storage

● Prometheus collects samples with the following structure:

http_requests_total{path=”/foo”,job=”webserver”,instance=”host-1:80”} 12 34567

The history of VictoriaMetrics: ClickHouse as metrics storage

metric_name labels value timestamp

The history of VictoriaMetrics: ClickHouse as metrics storage

● Let’s store Prometheus samples in the following ClickHouse table:

samples (
 metric_name String,
 labels String,
 timestamp Int64,
 value Float64
) ORDER BY (metric_name, labels, timestamp)

The history of VictoriaMetrics: ClickHouse as metrics storage

● Let’s store Prometheus samples in the following ClickHouse table:

samples (
 metric_name String,
 labels String,
 timestamp Int64,
 value Float64
) ORDER BY (metric_name, labels, timestamp)

● This allows quickly locating samples for a particular metric
● This allows searching for samples with particular labels via regexp matching. But this

isn’t an easy and fast task
● `metric_name` and `labels` are duplicated with every sample

The history of VictoriaMetrics: ClickHouse as metrics storage

● Let’s move `metric_name` and `labels` columns into a separate table:

metric_to_series (metric_name String, labels String, series_id Uint64)
ORDER BY (metric_name, labels)

The history of VictoriaMetrics: ClickHouse as metrics storage

● Let’s move `metric_name` and `labels` columns into a separate table:

metric_to_series (metric_name String, labels String, series_id Uint64)
ORDER BY (metric_name, labels)

● Then the `samples` table will look like:

samples (series_id Uint64, timestamp Int64, value Float64) ORDER BY
(series_id, timestamp)

● This reduces the overhead for storing `metric_name` and `labels` per each sample

The history of VictoriaMetrics: ClickHouse as metrics storage

● Let’s move `metric_name` and `labels` columns into a separate table:

metric_to_series (metric_name String, labels String, series_id Uint64)
ORDER BY (metric_name, labels)

● Then the `samples` table will look like:

samples (series_id Uint64, timestamp Int64, value Float64) ORDER BY
(series_id, timestamp)

● This reduces the overhead for storing `metric_name` and `labels` per each sample
● But it is still hard to search by labels

The history of VictoriaMetrics: ClickHouse as metrics storage

● Let’s introduce an additional table:

label_to_series (label_name_value String, series_id Uint64) ORDER BY
(label_name_value, series_id)

● The `label_name_value` column contains `label=value` strings
● This table simplifies and speeds up searching by labels
● Such table is known as “inverted index”

The history of VictoriaMetrics: ClickHouse as metrics storage

● The `samples` table can be optimized further with special codecs for timestamp and
value:

samples (timestamp Int64 Codec(DoubleDelta), value Float64 Codec(Gorilla))

● These codecs reduce disk space usage for typical time series data

The history of VictoriaMetrics: ClickHouse as metrics storage

● The `samples` table can be optimized further with special codecs for timestamp and
value:

samples (timestamp Int64 Codec(DoubleDelta), value Float64 Codec(Gorilla))

● These codecs reduce disk space usage for typical time series data
● Unfortunately these codecs weren’t available in ClickHouse in 2017 :(
● These codecs were added after the feature request -

https://github.com/ClickHouse/ClickHouse/issues/838

The history of VictoriaMetrics: ClickHouse as metrics storage

● The `series` and `label_to_series` tables also can be optimized further by using
LowCardinality codecs:

series (metric_name LowCardinality(String), labels String, series_id Uint64)

label_to_series (label_name_value LowCardinality(String), series_id Uint64)

● This saves disk space and improves query performance

The history of VictoriaMetrics: ClickHouse as metrics storage

● The `series` and `label_to_series` tables also can be optimized further by using
LowCardinality codecs:

series (metric_name LowCardinality(String), labels String, series_id Uint64)

label_to_series (label_name_value LowCardinality(String), series_id Uint64)

● This saves disk space and improves query performance
● But LowCardinality codec wasn’t available in ClickHouse in 2017 :(
● It was added as a response to the feature request -

https://github.com/ClickHouse/ClickHouse/issues/1567

The history of VictoriaMetrics: ClickHouse as metrics storage

● Further optimizations:
○ The `metric_name` column can be encoded as a label with a special name -

`__name__` (Prometheus does this)
○ There should be a table for fast lookup of metric_name{labels} from `series_id`

during queries

The history of VictoriaMetrics: ClickHouse as metrics storage

● The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

This table is used by the app, which accepts new samples and needs to determine the
corresponding series_id per each incoming sample

The history of VictoriaMetrics: ClickHouse as metrics storage

● The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

series_to_metric (series_id Uint64, metric_name_with_labels String) ORDER
BY (series_id)

This table is needed for converting the found series_id to human-readable format
metric_name{labels} during queries

The history of VictoriaMetrics: ClickHouse as metrics storage

● The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

series_to_metric (series_id Uint64, metric_name_with_labels String) ORDER
BY (series_id)

label_to_series (label_name_value LowCardinality(String), series_id
Uint64) ORDER BY (label_name_value, series_id)

This table is used for fast lookups of series_id for the given label filters during queries. For
example, http_requests_total{job=”webserver”} should find series_id values for series with
both {__name__=”http_requests_total”} and {job=”webserver”} labels

The history of VictoriaMetrics: ClickHouse as metrics storage

● The final database structure would consist of the following tables:

metric_to_series (metric_name_with_labels String, series_id Uint64) ORDER
BY (metric_name_with_labels, labels)

series_to_metric (series_id Uint64, metric_name_with_labels String) ORDER
BY (series_id)

label_to_series (label_name_value LowCardinality(String), series_id
Uint64) ORDER BY (label_name_value, series_id)

samples (series_id Uint64, timestamp Int64 Codec(DoubleDelta), value
Float64 Codec(Gorilla)) ORDER BY (series_id, timestamp)

This table stores (timestamp, value) pairs for the ingested samples

The history of VictoriaMetrics: ClickHouse as metrics storage

● This approach looks good
● But it has the following issues:

○ It needs an external app for collecting the incoming samples and quickly adding missing
entries to `metric_to_series`, `series_to_metric` and `label_to_series` tables. The app should be
able to buffer incoming data in order to reduce the frequency of inserts to ClickHouse

○ It needs an external app for providing Prometheus-compatible querying API
○ This increases operational complexity
○ The on-disk compression level can be improved further

Meet VictoriaMetrics!

Meet VictoriaMetrics!

● So we decided to create a specialized time series database from scratch in
order to solve the mentioned issues

● It should meet the following requirements:
○ It must be fast
○ It must be easy to setup and operate
○ It must scale both vertically (more CPU and RAM) and horizontally (multiple nodes)
○ It must be easy to code

Meet VictoriaMetrics!

● So we decided to create a specialized time series database from scratch in
order to solve the mentioned issues

● It should meet the following requirements:
○ It must be fast
○ It must be easy to setup and operate
○ It must scale both vertically (more CPU and RAM) and horizontally (multiple nodes)
○ It must be easy to code

● I don’t like C++ because of its complexity, but I like writing fast code in Go
● So VictoriaMetrics is written in Go :)

Meet VictoriaMetrics!

● Conceptually VictoriaMetrics uses the same database scheme discussed
previously:

○ metric_to_series (metric_name_with_labels string, series_id uint64)
○ series_to_metric (series_id uint64, metric_name_with_labels string)
○ label_to_series (label_name_value string, series_id uint64)
○ samples (series_id uint64, timestamp int64, value float64)

● But it doesn’t use external libraries or apps for the database
● It implements specially optimized persistent data structures for the given

tables

VictoriaMetrics: persistent data structures

● The first three tables - `metric_to_series`, `series_to_metric` and
`label_to_series` - are stored in a mergeset (aka indexdb). It stores sorted
strings. It is optimized for fast data insertion, fast lookups and fast range
scans by string prefix

● The last table - `samples` - is stored in a separate data structure similar to
MergeTree in ClickHouse

VictoriaMetrics: data ingestion path

● VictoriaMetrics accepts samples in various formats: InfluxDB, Graphite,
OpenTSDB, Prometheus, DataDog, CSV, JSON, etc.

● The ingested samples are buffered in memory
● The indexdb is dynamically updated when samples with new

metric_name{labels} are ingested into the database
● The buffered samples are converted to ClickHouse-like parts and flushed to

disk every second

VictoriaMetrics: `samples` table internals

● A table is split into per-month partitions. This allows instant removal of the data outside the
retention period

● Each partition consists of ClickHouse-like parts, which are merged in background into
bigger parts

● Each part is split into blocks
● Each block contains samples only for a single time series. Samples are sorted by timestamp

in each block
● Block size is limited to 8K samples, so it can fit CPU cache for the max processing speed
● Blocks are processed independently of each other, so they can be processed in parallel
● `timestamp` and `value` columns are encoded separately with the most efficient codecs in

order to get the maximum compression rate -
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-go
rilla-317bc1f95932

VictoriaMetrics: query path

● Query is split into two steps:
○ Selecting time series matching the given label filters on the given time range
○ Processing samples for the selected time series according to the query

VictoriaMetrics: query path

● Query is split into two steps:
○ Selecting time series matching the given label filters on the given time range
○ Processing samples for the selected time series according to the query

● Matching time series are searched via `label_to_series` table. The table may
contain billions of entries, so VictoriaMetrics uses various optimization tricks
(composite index, per-day index, optimized bitset, unpacked data cache,
search cache) in order to speed up the search

VictoriaMetrics: query path

● Query is split into two steps:
○ Selecting time series matching the given label filters on the given time range
○ Processing samples for the selected time series according to the query

● Matching time series are searched via `label_to_series` table. The table may
contain billions of entries, so VictoriaMetrics uses various optimization tricks
(composite index, per-day index, optimized bitset, unpacked data cache,
search cache) in order to speed up the search

● Then VictoriaMetrics unpacks and processes blocks of samples for the found
time series on the given time range. Blocks are unpacked and processed in
parallel on all the available CPU cores in order to improve query performance

VictoriaMetrics: query path

● VictoriaMetrics implements MetricsQL - query language inspired by PromQL
- https://docs.victoriametrics.com/MetricsQL.html

● Typical queries used in monitoring are easier to write in MetricsQL than in
SQL -
https://valyala.medium.com/promql-tutorial-for-beginners-9ab455142085

● VictoriaMetrics implements the following query APIs:
○ Prometheus API - https://docs.victoriametrics.com/#prometheus-querying-api-usage
○ Graphite API - https://docs.victoriametrics.com/#graphite-api-usage

● VictoriaMetrics can be used as drop-in replacement for Prometheus and
Graphite

VictoriaMetrics: horizontal scalability

VictoriaMetrics: the end result

● Fast time series database and monitoring solution inspired by ClickHouse
● Easy to setup and operate
● Integrates with Prometheus, Grafana, InfluxDB, Graphite, DataDog and

OpenTSDB
● Scales vertically and horizontally
● Successfully handles tens of trillions (e.g. more than 10^13) of samples per

node in production - https://docs.victoriametrics.com/CaseStudies.html

Thank you!

