


What is Apache Druid®? Who are Imply?




€D BY Apache Druid is a high performance,

£ . real-time analytics database ... where fast
o S) druid" ad-hoc analytics, instant data visibility, or
i L, Ssupporting high concurrency is important ...
® ¢ where an interactive, consistent user
APP experience is desired.

We will devote our energy to making it as easy
as possible for people to use Druid and
build awesome data applications on top of it.

Fangjin Yang, October 2015
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Whether sending messages, shopping in an app, or 4
watching videos, modern consumers expect information

and responsiveness to be near-instant in their apps and

devices. From a developer’s perspective, this means

clean code and a fast database. 5

Software Engineering Daily: an interview with Eric Tschetter
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Fully scalable
. Batch and real-time data
) druid

Ad-hoc statistical queries

Low latency delivery
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Why Clickstream Analytics?
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“It puts us closer to our users
and if you know what your users want,
you're better able to serve them.”
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-

Drive loyalty with Personalise experiences Change what products

promotions based on your “usual’ they're showing to you by
purchasing pattern (graze or understanding purchase

Change advertising and hunt?) causation / correlation

alter promotion strategies

Get rid of site content and
Test tactics to reduce navigation that doesn't
churn of loyal visitors produce results

Create “first visit, first buy”
behaviour against
competitors

Drive conversion right from
the entry point



Clickstream Pipelines
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Clickstream is stateless
We don't know when a session ends

Clickstream is anonymous
We don't know who the visitor is



Javascript Code
(pixels, Divolte...)
Embedded Component
Log Files

Packet Sniffing

Specialised collectors
Applications & APIs
Machine & Human Data
Environmental Sensors
Systems of Record

Sources

kafka.

ZXPULSAR

Buses & Queues
Bulk Repositories
Distributed File Systems

Processing

S APACHEa

Oark’

Visitor
("user”)

Session
("visits”)

Consolidation & Enrichment
Transformation & Stripping
Verification & Validation
Filtering & Sorting

Storage Analysis

Feature & Structure Discovery
Segmentation & Classification
Recommendation
Prediction & Anomaly Detection
Statistical Calculations

Presentation

Real-time Analytics
Bl Reporting & Dashboards
Search & Filtering Uls
Applications & APIs



Javascript Code
(pixels, Divolte...)
Embedded Component
Log Files

Packet Sniffing

Specialised collectors
Applications & APIs
Machine & Human Data
Environmental Sensors
Systems of Record

Sources

kafka.

ZXPULSAR

Buses & Queues
Bulk Repositories
Distributed File Systems

Processing

S APACHEa

Oark’

Visitor
("user”)

Session
("visits”)

Consolidation & Enrichment
Transformation & Stripping
Verification & Validation
Filtering & Sorting

Storage Analysis

Feature & Structure Discovery
Segmentation & Classification
Recommendation
Prediction & Anomaly Detection
Statistical Calculations

Presentation

Real-time Analytics
Bl Reporting & Dashboards
Search & Filtering Uls
Applications & APIs



What problems do they face?

e Capturing data is hard

o Data aggregation
o Data scale

@zon
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What problems do they face?

e Capturing data is hard
o Data aggregation
o Data scale
e The volume is scary
o  Filtering for the right stuff

o Doing statistics ad-hoc
o Solving the COUNT DISTINCT problem

@zon
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What analytics are we talking about?

Web Analytics
Mobile App Analytics
Advertising
Streaming Video

Process Mining

@zon
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Critical Techniques
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Druid functionality

e Sub-partitioning: enhance pruning of data
that's picked up (multitenant, market
segmentation, end-user segmentation)

e Enrichment: ingestion time and upstream
(e.g. visitor demographics)

e Rollup: match end user display
requirements — the pixels on the screen!

e Approximation: Use HyperLoglLog and
Thetasketches for DISTINCT COUNT and
for set analysis (funnels)

Streaming: get data in FAST!
Compaction: Dealing with late arriving
and out of order data

Changeable Schemas: Adapting to
changes in upstream data

Expressions: Ingestion-time or upstream
calculation (e.g. RegEx)

Hyperlean tables: Filtering ahead of time
at ingestion or upstream

30



Critical Techniques: Funnel Analysis
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Funnel Patterns

e Approximation with Set Analysis
e Enriched Click data
e Enriched Session data

@zon
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Funnel Patterns

e Approximation with Set Analysis
e Enriched Click data
e Enriched Session data

@zon
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Impression Click Conversion
09:03 1 0 0
09:03 0 0 1
09:04 0 0 0
09:05 1 0 0
09:06 0 1 0
09:09 0 1 1
09:12 0 0 1




Impression Click Conversion
1 0 0
0 0 1
0 0 0
1 0 0
0 1 0
0 1 1
0 0 1
2 2 3




Funnel Patterns

e Approximation with Set Analysis
e Enriched Click data
e Enriched Session data

@zon
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Session Time Last Stage
1142 09:04 A

2131 10:03 A

3112 11:43 B

7126 12:51 D

Stage COUNT

A 5

B 250

C 500

D 1000




Session | Time F1 F2 F3
1142 09:04 A Z4 pl
2131 10:03 A Z6 pl
3112 11:43 B Z21 | cart
7126 12:51 D z7 ad




Critical Techniques: Sessionisation
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Sessions are long-lasting
Sessions are vague things
Some values cannot be known at Os



Session Analytics

Difficulty

How much effort was required to move along?

Progress
What was the schedule from A to B?

Goals
Did they attain any achievements or rewards?

Cause
What kinds of things force a change in state?

Purpose

What external factors influence things towards their
eventual state?

Plan
What route did the actor take to getting finished?

Acts
What actions did the actor take?

43



New Data

LAST KNOWN
STATE

Session Deltas

SUM
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AV
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AV
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AV

12

LAST KNOWN
STATE

> _time Cats

» 09:00 5
09:13 -1
09:34 0

/ 09:54 8
10:02 -6
SUM 6

48




Ingestion scalability
On-demand aggregation
Filtering efficiency
Time-based comparison

Approximation

Get it to the desk!






